Lösung 4.3:9

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_3_9-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_3_9-2(2).gif </center> {{NAVCONTENT_STOP}})
Aktuelle Version (10:45, 25. Aug. 2009) (bearbeiten) (rückgängig)
(Replaced figure with metapost figure)
 
(Der Versionsvergleich bezieht 9 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Wir verwenden die Doppelwinkelfunktion für <math>\sin 160^{\circ}</math>
-
<center> [[Bild:4_3_9-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Abgesetzte Formel||<math>\sin 160^{\circ} = 2\cos 80^{\circ}\sin 80^{\circ}\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:4_3_9-2(2).gif]] </center>
+
Wir verwenden jetzt die Doppelwinkelfunktion für den Faktor <math>\sin 80^{\circ}</math>, nachdem wir den Faktor <math>\cos 80^{\circ}</math> behalten möchten:
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Abgesetzte Formel||<math>2\cos 80^{\circ}\sin 80^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\sin 40^{\circ}\,.</math>}}
 +
 
 +
Wir verwenden noch einmal die Doppelwinkelfunktion, dieses Mal für den Faktor <math>\sin 40^{\circ}</math>
 +
 
 +
{{Abgesetzte Formel||<math>2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot\sin 40^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot 2\cos 20^{\circ}\sin 20^{\circ}\,\textrm{·}</math>}}
 +
 
 +
Also haben wir gezeigt, dass
 +
 
 +
{{Abgesetzte Formel||<math>\sin 160^{\circ} = 8\cos 80^{\circ}\cdot \cos 40^{\circ}\cdot \cos 20^{\circ}\cdot\sin 20^{\circ}</math>}}
 +
 
 +
Anders geschrieben:
 +
 
 +
{{Abgesetzte Formel||<math>\cos 80^{\circ}\cdot\cos 40^{\circ}\cdot \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}}\,\textrm{.}</math>}}
 +
 
 +
<center>{{:4.3.9 - Solution - The unit circle with angles 20° and 160°}}</center>
 +
 
 +
Zeichnen wir den Winkel <math>160^{\circ}</math> im Einheitskreis, sehen wir, dass der Winkel dieselbe ''y''-Koordinate wie der Winkel <math>20^{\circ}</math> hat und daher denselben Sinus. Also erhalten wir
 +
 
 +
<center><math>\sin 20^{\circ} = \sin 160^{\circ}\,\textrm{.}</math></center>
 +
 
 +
Damit haben wir die Gleichung
 +
 
 +
<center><math>\cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}} = \frac{1}{8}\,\textrm{.}</math></center>

Aktuelle Version

Wir verwenden die Doppelwinkelfunktion für \displaystyle \sin 160^{\circ}

\displaystyle \sin 160^{\circ} = 2\cos 80^{\circ}\sin 80^{\circ}\,\textrm{.}

Wir verwenden jetzt die Doppelwinkelfunktion für den Faktor \displaystyle \sin 80^{\circ}, nachdem wir den Faktor \displaystyle \cos 80^{\circ} behalten möchten:

\displaystyle 2\cos 80^{\circ}\sin 80^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\sin 40^{\circ}\,.

Wir verwenden noch einmal die Doppelwinkelfunktion, dieses Mal für den Faktor \displaystyle \sin 40^{\circ}

\displaystyle 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot\sin 40^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot 2\cos 20^{\circ}\sin 20^{\circ}\,\textrm{·}

Also haben wir gezeigt, dass

\displaystyle \sin 160^{\circ} = 8\cos 80^{\circ}\cdot \cos 40^{\circ}\cdot \cos 20^{\circ}\cdot\sin 20^{\circ}

Anders geschrieben:

\displaystyle \cos 80^{\circ}\cdot\cos 40^{\circ}\cdot \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}}\,\textrm{.}

[Image]

Zeichnen wir den Winkel \displaystyle 160^{\circ} im Einheitskreis, sehen wir, dass der Winkel dieselbe y-Koordinate wie der Winkel \displaystyle 20^{\circ} hat und daher denselben Sinus. Also erhalten wir

\displaystyle \sin 20^{\circ} = \sin 160^{\circ}\,\textrm{.}

Damit haben wir die Gleichung

\displaystyle \cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}} = \frac{1}{8}\,\textrm{.}