Antwort 4.3:6

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="100%" | <math>\sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad</math> och <math>\quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,</math> |- |b)...)
Aktuelle Version (11:08, 5. Apr. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%" | <math>\sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad</math> och <math>\quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,</math>
+
|width="100%" | <math>\sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad</math> und <math>\quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,</math>
|-
|-
|b)
|b)
-
|width="100%" | <math>\cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad</math> och <math>\quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,</math>
+
|width="100%" | <math>\cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad</math> und <math>\quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,</math>
|-
|-
|c)
|c)
-
|width="100%" | <math>\sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad</math> och <math>\quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,</math>
+
|width="100%" | <math>\sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad</math> und <math>\quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,</math>
|}
|}

Aktuelle Version

a) \displaystyle \sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad und \displaystyle \quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,
b) \displaystyle \cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad und \displaystyle \quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,
c) \displaystyle \sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad und \displaystyle \quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,