Binomialkoeffizient
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.) | |||
Zeile 2: | Zeile 2: | ||
<math> \binom{n}{k} = \dfrac{n!}{(n-k)!k!} </math> | <math> \binom{n}{k} = \dfrac{n!}{(n-k)!k!} </math> | ||
- | mit <math> n | + | mit <math> n \in N , k \in N , n \ge k </math> |
<div class="exempel"> | <div class="exempel"> | ||
Zeile 9: | Zeile 9: | ||
<ol> | <ol> | ||
<li><math> \binom{n}{k} = \binom{n}{n-k}</math><br> | <li><math> \binom{n}{k} = \binom{n}{n-k}</math><br> | ||
- | <math>\binom{n}{n-k} = \dfrac{n!}{(n-n+k)!(n-k)!} = \dfrac{n!}{(k)!(n-k)!} = \binom{n}{k} | + | <math>\binom{n}{n-k} = \dfrac{n!}{(n-n+k)!(n-k)!} = \dfrac{n!}{(k)!(n-k)!} = \binom{n}{k} </math> |
</li> | </li> | ||
- | <li><math> \binom{n}{0} = 1 </math><br> | + | <li> <math> \binom{n}{0} = 1 </math> <br> |
- | <math> \binom{n}{0} = \dfrac{n!}{(n-0)!0!} = \dfrac{n!}{n! \cdot 1} = \dfrac{n!}{n!} = 1 | + | <math> \binom{n}{0} = \dfrac{n!}{(n-0)!0!} = \dfrac{n!}{n! \cdot 1} = \dfrac{n!}{n!} = 1 </math> |
</li> | </li> | ||
<li><math> \binom{n}{1} = n </math><br> | <li><math> \binom{n}{1} = n </math><br> |
Aktuelle Version
Eigenschaften des Binomialkoeffizienten
\displaystyle \binom{n}{k} = \dfrac{n!}{(n-k)!k!} mit \displaystyle n \in N , k \in N , n \ge k
Beispiel 1
- \displaystyle \binom{n}{k} = \binom{n}{n-k}
\displaystyle \binom{n}{n-k} = \dfrac{n!}{(n-n+k)!(n-k)!} = \dfrac{n!}{(k)!(n-k)!} = \binom{n}{k} - \displaystyle \binom{n}{0} = 1
\displaystyle \binom{n}{0} = \dfrac{n!}{(n-0)!0!} = \dfrac{n!}{n! \cdot 1} = \dfrac{n!}{n!} = 1 - \displaystyle \binom{n}{1} = n
\displaystyle \binom{n}{1} = \dfrac{n!}{(n-1)!1!} = \dfrac{n! n }{(n-1)!n} = \dfrac{n!n }{n!} = n - \displaystyle \binom{n}{n} = 1
\displaystyle \binom{n}{n} = \dfrac{n!}{(n-n)!n!} = \dfrac{n!}{0!n!} = \dfrac{n!}{1 \cdot n!} = 1 - \displaystyle \binom{n}{n-1} = n
\displaystyle \binom{n}{n-1} = \dfrac{n!}{(n-n+1)!(n-1)!} = \dfrac{n!}{1!(n-1)!} = \dfrac{n!n}{(n-1)!n} = \dfrac{n! n}{n!} = n - \displaystyle \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}
\displaystyle \binom{n-1}{k} + \binom{n-1}{k-1} = \dfrac{(n-1)!}{(n-1-k)!k!} + \dfrac{(n-1)!}{(n-1-(k-1))!(k-1)!}
\displaystyle = \dfrac{(n-1)!}{(n-1-k)!k!} + \dfrac{(n-1)!k}{(n-k)!(k-1)! k} = \dfrac{(n-1)!(n-k)}{(n-1-k)!k! (n-k)} + \dfrac{(n-1)! k}{(n-k)!k!}
\displaystyle = \dfrac{(n-1)!(n-k)}{(n-k)!k!} + \dfrac{(n-1)!k}{(n-k)!k!} = \dfrac{(n-1)!(n-k) + (n-1)! k}{(n-k)!k!} = \dfrac{(n-1)!(n-k+k)}{(n-k)!k!}
\displaystyle = \dfrac{(n-1)!n}{(n-k)!k!} = \dfrac{n!}{(n-k)!k!} = \binom{n}{k}
Das Paskalsche Dreieck