Lösung 4.1:10

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:37, 20. Aug. 2009) (bearbeiten) (rückgängig)
(Replaced figure with metapost figure)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
Zuerst schreiben wir alle Längen in dm (Dezimeter) sodass wir mit ganzen Zahlen arbeiten.
+
Zuerst schreiben wir alle Längen in dm (Dezimeter), damit wir in ganzen Zahlen arbeiten können.
-
Wir benennen die Abstände von den Bäumen zum Kleidungstück ''y'' und ''z'', wie im Bild unten. Wir erhalten so zwei Dreiecke mit den Hypotenusen ''y'' und ''z'' (Wir haben angenommen dass das Kleidungsstück schwer ist, ond dass alle Abstände gerade sind).
+
Wir benennen die Abstände von den Bäumen zum Kleidungstück ''y'' und ''z'', wie im Bild unten. Wir erhalten so zwei Dreiecke mit den Hypotenusen ''y'' und ''z'' (Wir haben angenommen, dass das Kleidungsstück schwer ist und alle Abstände gerade sind).
-
<center> [[Image:4_1_10-1(5)_.gif]] </center>
+
<center>{{:4.1.10 - Solution - Two clothes-line triangles}}</center>
-
Nachdem die Wäscheleine 54 dm lang ist erhalten wir
+
Nachdem die Wäscheleine 54 dm lang ist, erhalten wir
{{Abgesetzte Formel||<math>y+z=54\,\textrm{.}</math>|(1)}}
{{Abgesetzte Formel||<math>y+z=54\,\textrm{.}</math>|(1)}}
Zeile 36: Zeile 36:
{{Abgesetzte Formel||<math>2916 - 108y + y^2 = x^2 + 12x + 1332\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>2916 - 108y + y^2 = x^2 + 12x + 1332\,\textrm{.}</math>}}
-
Wir verwenden (2) und ersetzen <math>y^2</math> mit <math>x^2+12</math> in dieser Gleichung,
+
Wir verwenden (2) und ersetzen <math>y^2</math> mit <math>x^2+12</math> in dieser Gleichung
-
{{Abgesetzte Formel||<math>2916 - 108y + x^2 + 144 = x^2 + 12x + 1332</math>}}
+
{{Abgesetzte Formel||<math>2916 - 108y + x^2 + 144 = x^2 + 12x + 1332\,.</math>}}
-
und so eliminieren wir alle''x''²-Terme,
+
So eliminieren wir alle''x''²-Terme:
-
{{Abgesetzte Formel||<math>2916 - 108y + 144 = 12x + 1332\,,</math>}}
+
{{Abgesetzte Formel||<math>2916 - 108y + 144 = 12x + 1332\,.</math>}}
Durch weitere Vereinfachung erhalten wir
Durch weitere Vereinfachung erhalten wir
Zeile 48: Zeile 48:
{{Abgesetzte Formel||<math>12x + 108y = 1728</math>|(3")}}
{{Abgesetzte Formel||<math>12x + 108y = 1728</math>|(3")}}
-
Wir haben jetzt die Gleichungen (2) und (3') in die Gleichungen (2) und (3'') gebracht, wo (3'') linear ist.
+
Wir haben jetzt die Gleichungen (2) und (3') in die Gleichungen (2) und (3") gebracht, wobei (3") linear ist.
{{Abgesetzte Formel||<math>\left\{ \begin{align}
{{Abgesetzte Formel||<math>\left\{ \begin{align}
Zeile 63: Zeile 63:
{{Abgesetzte Formel||<math>\Bigl(16-\frac{x}{9}\Bigr)^2 = x^2 + 144\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\Bigl(16-\frac{x}{9}\Bigr)^2 = x^2 + 144\,\textrm{.}</math>}}
-
Dies ist eine Gleichung mit nur einen Unbekannten ''x'', und lösen wir diese Gleichung erhalten wir ''x''.
+
Dies ist eine Gleichung mit nur einer Unbekannten ''x''. Diese lösen wir, indem wir zuerst die Quadrate auf der linken Seite erweitern:
-
Wir erweitern die Quadraten auf der linken Seite
+
{{Abgesetzte Formel||<math>16^{2}-2\cdot 16\cdot \frac{x}{9} + \Bigl(\frac{x}{9} \Bigr)^2 = x^2 + 144\,.</math>}}
-
{{Abgesetzte Formel||<math>16^{2}-2\cdot 16\cdot \frac{x}{9} + \Bigl(\frac{x}{9} \Bigr)^2 = x^2 + 144</math>}}
+
Dann schreiben wir alle Terme auf eine Seite
-
 
+
-
und sammeln alle Terme auf einer Seite
+
{{Abgesetzte Formel||<math>x^2 - \frac{x^{2}}{81} + \frac{32}{9}x + 144 - 16^{2} = 0\,,</math>}}
{{Abgesetzte Formel||<math>x^2 - \frac{x^{2}}{81} + \frac{32}{9}x + 144 - 16^{2} = 0\,,</math>}}
-
und erhalten so die Gleichung
+
und erhalten damit
{{Abgesetzte Formel||<math>\frac{80}{81}x^2 + \frac{32}{9}x - 112 = 0\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\frac{80}{81}x^2 + \frac{32}{9}x - 112 = 0\,\textrm{.}</math>}}
-
Wir multiplizieren beide Seiten mit <math>81/80</math> sodass wir die Gleichung auf Standardform bringen,
+
Wir multiplizieren beide Seiten mit <math>81/80</math>, damit wir die Gleichung auf Standardform bringen:
{{Abgesetzte Formel||<math>x^{2} + \frac{18}{5}x - \frac{567}{5} = 0\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>x^{2} + \frac{18}{5}x - \frac{567}{5} = 0\,\textrm{.}</math>}}
Zeile 89: Zeile 87:
{{Abgesetzte Formel||<math>\Bigl(x+\frac{9}{5}\Bigr)^2 = \frac{81}{25} + \frac{567}{5} = \frac{2916}{25}\,,</math>}}
{{Abgesetzte Formel||<math>\Bigl(x+\frac{9}{5}\Bigr)^2 = \frac{81}{25} + \frac{567}{5} = \frac{2916}{25}\,,</math>}}
-
und also ist
+
also ist
{{Abgesetzte Formel||<math>x = -\frac{9}{5}\pm \sqrt{\frac{2916}{25}} = -\frac{9}{5}\pm \frac{54}{5}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>x = -\frac{9}{5}\pm \sqrt{\frac{2916}{25}} = -\frac{9}{5}\pm \frac{54}{5}\,\textrm{.}</math>}}
Zeile 95: Zeile 93:
Also hat die Gleichung die Lösungen
Also hat die Gleichung die Lösungen
-
{{Abgesetzte Formel||<math>x=-\frac{9}{5}-\frac{54}{5}=-\frac{63}{5}\qquad\text{and}\qquad x=-\frac{9}{5}+\frac{54}{5}=9\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x=-\frac{9}{5}-\frac{54}{5}=-\frac{63}{5}\qquad\text{und}\qquad x=-\frac{9}{5}+\frac{54}{5}=9\,\textrm{.}</math>}}
-
Die Antwort ist also <math>x=9\ \textrm{dm}</math> (Die Negative Lösung müssen wir verwerfen).
+
Die Antwort ist also <math>x=9\ \textrm{dm}</math> (Die negative Lösung müssen wir verwerfen).
-
Um zu prüfen ob wir richtig gerechnet haben, können wir zuerst ''y'' und ''z'' berechnen, und testen ob diese Werte zusammen mit ''x'' die Gleichungen (1) - (3) erfüllen.
+
Um zu prüfen, ob wir richtig gerechnet haben, können wir zuerst ''y'' und ''z'' berechnen und testen, ob diese Werte zusammen mit ''x'' die Gleichungen (1) - (3) erfüllen.
Die Gleichung (3") gibt
Die Gleichung (3") gibt
Zeile 109: Zeile 107:
{{Abgesetzte Formel||<math>z=54-y=54-15=39\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>z=54-y=54-15=39\,\textrm{.}</math>}}
-
Jetzt prüfen wir ob <math>x=9</math>, <math>y=15</math> und <math>z=39</math> die Gleichungen (1), (2) und (3) erfüllen,
+
Jetzt prüfen wir, ob <math>x=9</math>, <math>y=15</math> und <math>z=39</math> die Gleichungen (1), (2) und (3) erfüllen:
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}

Aktuelle Version

Zuerst schreiben wir alle Längen in dm (Dezimeter), damit wir in ganzen Zahlen arbeiten können.

Wir benennen die Abstände von den Bäumen zum Kleidungstück y und z, wie im Bild unten. Wir erhalten so zwei Dreiecke mit den Hypotenusen y und z (Wir haben angenommen, dass das Kleidungsstück schwer ist und alle Abstände gerade sind).


[Image]

Nachdem die Wäscheleine 54 dm lang ist, erhalten wir

\displaystyle y+z=54\,\textrm{.} (1)

Mit dem Gesetz des Pythagoras erhalten wir

\displaystyle y^2 = x^2 + 12^2\,, (2)
\displaystyle z^2 = (x+6)^2 + 36^2\,\textrm{.} (3)

Wir lösen jetzt die Gleichungen (1)-(3), indem wir zuerst z eliminieren, und eine Gleichung mit nur x und y erhalten. Danach eliminieren wir y, und erhalten so eine Gleichung mit nur x.

Von (1) erhalten wir \displaystyle z = 54-y, und dies in (3) ergibt

\displaystyle (54-y)^2 = (x+6)^2 + 36^2\,\textrm{.} (3')

Jetzt haben wir nurmehr die Gleichungen (2) und (3), und die Unbekannten x und y,

\displaystyle \left\{ \begin{align}

& y^2 = x^2 + 12^2\,,\\[5pt] & (54-y)^2 = (x+6)^2 + 36^2\,\textrm{.} \end{align} \right.

\displaystyle \begin{align}(2)\\[5pt] (3')\end{align}

Wir erweitern die Quadraten in (3'),

\displaystyle 54^2 - 2\cdot 54\cdot y + y^2 = x^2 + 2\cdot 6\cdot x + 6^2 + 36^2\,,

und vereinfachen

\displaystyle 2916 - 108y + y^2 = x^2 + 12x + 1332\,\textrm{.}

Wir verwenden (2) und ersetzen \displaystyle y^2 mit \displaystyle x^2+12 in dieser Gleichung

\displaystyle 2916 - 108y + x^2 + 144 = x^2 + 12x + 1332\,.

So eliminieren wir allex²-Terme:

\displaystyle 2916 - 108y + 144 = 12x + 1332\,.

Durch weitere Vereinfachung erhalten wir

\displaystyle 12x + 108y = 1728 (3")

Wir haben jetzt die Gleichungen (2) und (3') in die Gleichungen (2) und (3") gebracht, wobei (3") linear ist.

\displaystyle \left\{ \begin{align}

& y^2 = x^2 + 12^2\,,\\[5pt] & 12x+108y=1728\,\textrm{.} \end{align} \right.

\displaystyle \begin{align}(2)\\[5pt] (3")\end{align}

Wir lösen y in der Gleichung (3"),

\displaystyle y=\frac{1728-12x}{108}=16-\frac{x}{9}

und ersetzen y mit \displaystyle 16-\frac{x}{9} in (2),

\displaystyle \Bigl(16-\frac{x}{9}\Bigr)^2 = x^2 + 144\,\textrm{.}

Dies ist eine Gleichung mit nur einer Unbekannten x. Diese lösen wir, indem wir zuerst die Quadrate auf der linken Seite erweitern:

\displaystyle 16^{2}-2\cdot 16\cdot \frac{x}{9} + \Bigl(\frac{x}{9} \Bigr)^2 = x^2 + 144\,.

Dann schreiben wir alle Terme auf eine Seite

\displaystyle x^2 - \frac{x^{2}}{81} + \frac{32}{9}x + 144 - 16^{2} = 0\,,

und erhalten damit

\displaystyle \frac{80}{81}x^2 + \frac{32}{9}x - 112 = 0\,\textrm{.}

Wir multiplizieren beide Seiten mit \displaystyle 81/80, damit wir die Gleichung auf Standardform bringen:

\displaystyle x^{2} + \frac{18}{5}x - \frac{567}{5} = 0\,\textrm{.}

Quadratische Ergänzung auf der linken Seite ergibt

\displaystyle \Bigl(x+\frac{9}{5}\Bigr)^2 - \Bigl(\frac{9}{5}\Bigr)^{2} - \frac{567}{5} = 0

oder

\displaystyle \Bigl(x+\frac{9}{5}\Bigr)^2 = \frac{81}{25} + \frac{567}{5} = \frac{2916}{25}\,,

also ist

\displaystyle x = -\frac{9}{5}\pm \sqrt{\frac{2916}{25}} = -\frac{9}{5}\pm \frac{54}{5}\,\textrm{.}

Also hat die Gleichung die Lösungen

\displaystyle x=-\frac{9}{5}-\frac{54}{5}=-\frac{63}{5}\qquad\text{und}\qquad x=-\frac{9}{5}+\frac{54}{5}=9\,\textrm{.}

Die Antwort ist also \displaystyle x=9\ \textrm{dm} (Die negative Lösung müssen wir verwerfen).

Um zu prüfen, ob wir richtig gerechnet haben, können wir zuerst y und z berechnen und testen, ob diese Werte zusammen mit x die Gleichungen (1) - (3) erfüllen.

Die Gleichung (3") gibt

\displaystyle y = 16-\frac{x}{9} = 16-1 = 15

und die Gleichung (1) gibt

\displaystyle z=54-y=54-15=39\,\textrm{.}

Jetzt prüfen wir, ob \displaystyle x=9, \displaystyle y=15 und \displaystyle z=39 die Gleichungen (1), (2) und (3) erfüllen:

\displaystyle \begin{align}

\textrm{Linke Seite von (1)} &= 15+39 = 54\,,\\[5pt] \textrm{Rechte Seite von (1)} &= 54\,,\\[10pt] \textrm{Linke Seite von (2)} &= 15^2 = 225\,,\\[5pt] \textrm{Rechte Seite von (2)} &= 9^2 + 12^2 = 81+144 = 225\,,\\[10pt] \textrm{Linke Seite von (3)} &= 39^2 = 1521\,,\\[5pt] \textrm{Rechte Seite von (3)} &= (9+6)^2 + 36^2 = 15^2 + 36^2 = 225+1296 = 1521\,\textrm{.} \end{align}