Lösung 2.3:9b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (hat „Solution 2.3:9b“ nach „Lösung 2.3:9b“ verschoben: Robot: moved page)
Aktuelle Version (13:13, 19. Aug. 2009) (bearbeiten) (rückgängig)
(Replaced figure with metapost figure)
 
(Der Versionsvergleich bezieht 2 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The points of intersection are those points on the curve which also lie on the ''x''-axis, i.e. they are those points which satisfy both the equation of the curve
+
Die Schnittpunkte sind die Punkte, die auf der Parabel und auf der ''x''-Achse liegen, und also die beiden Gleichungen <math>y=x^{2}-5x+6</math> und <math>y=0</math> erfüllen:
-
<math>y=x^{2}-5x+6</math> and the equation of the ''x''-axis <math>y=0</math>,
+
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
Zeile 7: Zeile 6:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
This system of equations gives directly that <math>y=0</math> and that <math>x</math> must satisfy the quadratic equation <math>x^{2}-5x+6=0\,</math>. By completing the square, we obtain that the left-hand side is
+
Wir erhalten direkt, dass <math>y=0</math> und dass <math>x</math> die Gleichung <math>x^{2}-5x+6=0\,</math> erfüllt. Durch quadratische Ergänzung erhalten wir
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}
Zeile 15: Zeile 14:
\end{align}</math>}}
\end{align}</math>}}
-
and this gives that the equation has solutions <math>x=\tfrac{5}{2}\pm\tfrac{1}{2}</math>, i.e. <math>x=\tfrac{5}{2}-\tfrac{1}{2}=\tfrac{4}{2}=2</math> and <math>x=\tfrac{5}{2}+\tfrac{1}{2}=\tfrac{6}{2}=3</math>.
+
Dies ergibt die Lösungen <math>x=\tfrac{5}{2}\pm\tfrac{1}{2}</math>, also <math>x=\tfrac{5}{2}-\tfrac{1}{2}=\tfrac{4}{2}=2</math> und <math>x=\tfrac{5}{2}+\tfrac{1}{2}=\tfrac{6}{2}=3</math>.
-
The intersection points are therefore (2,0) and (3,0).
+
Die Schnittpunkte sind also (2,0) und (3,0).
-
<center>[[Image:2_3_9b-2(2).gif]]</center>
+
<center>{{:2.3.9b - Solution - The parabola y = x² - 5x + 6 and points (2,0) and (3,0)}}</center>

Aktuelle Version

Die Schnittpunkte sind die Punkte, die auf der Parabel und auf der x-Achse liegen, und also die beiden Gleichungen \displaystyle y=x^{2}-5x+6 und \displaystyle y=0 erfüllen:

\displaystyle \left\{\begin{align}

y&=x^{2}-5x+6\,,\\ y&=0\,\textrm{.} \end{align}\right.

Wir erhalten direkt, dass \displaystyle y=0 und dass \displaystyle x die Gleichung \displaystyle x^{2}-5x+6=0\, erfüllt. Durch quadratische Ergänzung erhalten wir

\displaystyle \begin{align}

x^{2} - 5x + 6 &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} + 6\\[5pt] &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{24}{4}\\[5pt] &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{1}{4} \end{align}

Dies ergibt die Lösungen \displaystyle x=\tfrac{5}{2}\pm\tfrac{1}{2}, also \displaystyle x=\tfrac{5}{2}-\tfrac{1}{2}=\tfrac{4}{2}=2 und \displaystyle x=\tfrac{5}{2}+\tfrac{1}{2}=\tfrac{6}{2}=3.

Die Schnittpunkte sind also (2,0) und (3,0).


[Image]