Lösung 3.1:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Aktuelle Version (20:55, 12. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
In order to eliminate <math>\sqrt[3]{7} = 7^{1/3}</math> from the denominator, we can multiply the top and bottom of the fraction by <math>7^{2/3}</math>. The denominator becomes <math>7^{1/3}\cdot 7^{2/3} = 7^{1/3+2/3} = 7^1 = 7</math> and we get
+
Wir schreiben die Wurzel als eine Potenz <math>\sqrt[3]{7} = 7^{1/3}</math> und erhalten so
-
{{Abgesetzte Formel||<math>\frac{1}{\sqrt[3]{7}} = \frac{1}{7^{1/3}} = \frac{1}{7^{1/3}}\cdot \frac{7^{2/3}}{7^{2/3}} = \frac{7^{2/3}}{7}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{1}{\sqrt[3]{7}} = \frac{1}{7^{1/3}}\textrm{.}</math>}}
 +
 
 +
Danach erweitern wir den Bruch mit <math>\frac{7^{2/3}}{7^{2/3}}</math>
 +
 
 +
{{Abgesetzte Formel||<math> \frac{1}{7^{1/3}} = \frac{1}{7^{1/3}}\cdot \frac{7^{2/3}}{7^{2/3}} = \frac{7^{2/3}}{7^{1/3+2/3}} = \frac{7^{2/3}}{7^1} = \frac{7^{2/3}}{7}\textrm{.}</math>}}

Aktuelle Version

Wir schreiben die Wurzel als eine Potenz \displaystyle \sqrt[3]{7} = 7^{1/3} und erhalten so

\displaystyle \frac{1}{\sqrt[3]{7}} = \frac{1}{7^{1/3}}\textrm{.}

Danach erweitern wir den Bruch mit \displaystyle \frac{7^{2/3}}{7^{2/3}}

\displaystyle \frac{1}{7^{1/3}} = \frac{1}{7^{1/3}}\cdot \frac{7^{2/3}}{7^{2/3}} = \frac{7^{2/3}}{7^{1/3+2/3}} = \frac{7^{2/3}}{7^1} = \frac{7^{2/3}}{7}\textrm{.}