Lösung 2.3:7b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (09:40, 9. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 7 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We rewrite the expression by completing the square:
+
Wir verwenden die quadratische Ergänzung
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
-x^{2}+3x-4
 +
&= -\bigl(x^{2}-3x+4\bigr)\\[5pt]
 +
&= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}-\Bigl(\frac{3}{2}\Bigr)^{2}+4\Bigr)\\[5pt]
 +
&= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}-\frac{9}{4}+\frac{16}{4}\Bigr)\\[5pt]
 +
&= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}+\frac{7}{4}\Bigr)\\[5pt]
 +
&= -\Bigl(x-\frac{3}{2}\Bigr)^{2}-\frac{7}{4}\,\textrm{,}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
und sehen, dass hier der quadratische Term <math>-(x-\tfrac{3}{2})^{2}</math> immer kleiner als Null ist. Also ist der größte Wert der Ausdruckes <math>-7/4</math>, wenn <math>x-\tfrac{3}{2}=0\</math> ist, also <math>x=\tfrac{3}{2}\,</math>.
-
& -x^{2}+3x-4=-\left( x^{2}-3x+4 \right)=-\left( \left( x-\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}+4 \right) \\
+
-
& =-\left( \left( x-\frac{3}{2} \right)^{2}-\frac{9}{4}+\frac{16}{4} \right)=-\left( \left( x-\frac{3}{2} \right)^{2}+\frac{7}{4} \right)=-\left( x-\frac{3}{2} \right)^{2}-\frac{7}{4} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
Now, we see that the first term
+
-
<math>-\left( x-\frac{3}{2} \right)^{2}</math>
+
-
is a quadratic with a minus sign in front, so that term is always less than or equal to zero. This means that the polynomial's largest value is
+
-
<math>-{7}/{4}\;</math>
+
-
and that occurs when
+
-
<math>x-\frac{3}{2}=0</math>, i.e.
+
-
<math>x=\frac{3}{2}</math>.
+

Aktuelle Version

Wir verwenden die quadratische Ergänzung

\displaystyle \begin{align}

-x^{2}+3x-4 &= -\bigl(x^{2}-3x+4\bigr)\\[5pt] &= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}-\Bigl(\frac{3}{2}\Bigr)^{2}+4\Bigr)\\[5pt] &= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}-\frac{9}{4}+\frac{16}{4}\Bigr)\\[5pt] &= -\Bigl(\Bigl(x-\frac{3}{2}\Bigr)^{2}+\frac{7}{4}\Bigr)\\[5pt] &= -\Bigl(x-\frac{3}{2}\Bigr)^{2}-\frac{7}{4}\,\textrm{,} \end{align}

und sehen, dass hier der quadratische Term \displaystyle -(x-\tfrac{3}{2})^{2} immer kleiner als Null ist. Also ist der größte Wert der Ausdruckes \displaystyle -7/4, wenn \displaystyle x-\tfrac{3}{2}=0\ ist, also \displaystyle x=\tfrac{3}{2}\,.