Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.2:3a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (22:36, 8. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.)
Zeile 1: Zeile 1:
-
Zuerst erweitern wir beide Brüche sodass sie einen gemeinsamen Nenner bekommen
+
Zuerst erweitern wir beide Brüche, sodass sie einen gemeinsamen Nenner bekommen
{{Abgesetzte Formel||<math>\frac{x+3}{x-3}\cdot \frac{x-2}{x-2}-\frac{x+5}{x-2}\cdot \frac{x-3}{x-3}=0\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\frac{x+3}{x-3}\cdot \frac{x-2}{x-2}-\frac{x+5}{x-2}\cdot \frac{x-3}{x-3}=0\,\textrm{.}</math>}}
-
Jetzt subtrahieren wir den zweiten Zähler von den ersten.
+
Jetzt subtrahieren wir den zweiten Zähler von dem ersten
{{Abgesetzte Formel||<math>\frac{(x+3)(x-2)-(x+5)(x-3 )}{(x-2)(x-3)}=0\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\frac{(x+3)(x-2)-(x+5)(x-3 )}{(x-2)(x-3)}=0\,\textrm{.}</math>}}
-
Jetzt erweitern wir die Klammern im Zähler,
+
Jetzt erweitern wir die Klammern im Zähler
{{Abgesetzte Formel||<math>\frac{x^{2}-2x+3x-6-(x^{2}-3x+5x-15)}{(x-2)(x-3)}=0</math>}}
{{Abgesetzte Formel||<math>\frac{x^{2}-2x+3x-6-(x^{2}-3x+5x-15)}{(x-2)(x-3)}=0</math>}}
Zeile 16: Zeile 16:
-
Die linke Seite ist null, nur wenn der Zähler null ist (und der Nenner nicht null ist), und also lösen wir folgende Gleichung:
+
Die linke Seite ist nur null, wenn der Zähler null ist (und der Nenner nicht null ist). So lösen wir folgende Gleichung:
{{Abgesetzte Formel||<math>-x+9=0\,</math>,}}
{{Abgesetzte Formel||<math>-x+9=0\,</math>,}}
Zeile 22: Zeile 22:
Also <math>x=9</math>.
Also <math>x=9</math>.
-
Indem wir <math>x=9</math> in der ursprünglichen Gleichung substituieren, kontrollieren wir dass die Lösung korrekt ist.
+
Indem wir <math>x=9</math> in der ursprünglichen Gleichung substituieren, kontrollieren wir, ob die Lösung korrekt ist.
{{Abgesetzte Formel||<math>\text{Linke Seite}=\frac{9+3}{9-3}-\frac{9+5}{9-2}=\frac{12}{6}-\frac{14}{7}=2-2=0=\text{Rechte Seite.}</math>}}
{{Abgesetzte Formel||<math>\text{Linke Seite}=\frac{9+3}{9-3}-\frac{9+5}{9-2}=\frac{12}{6}-\frac{14}{7}=2-2=0=\text{Rechte Seite.}</math>}}

Aktuelle Version

Zuerst erweitern wir beide Brüche, sodass sie einen gemeinsamen Nenner bekommen

x3x+3x2x2x2x+5x3x3=0.

Jetzt subtrahieren wir den zweiten Zähler von dem ersten

(x2)(x3)(x+3)(x2)(x+5)(x3)=0.

Jetzt erweitern wir die Klammern im Zähler

(x2)(x3)x22x+3x6(x23x+5x15)=0

und vereinfachen ein wenig

x+9(x2)(x3)=0.


Die linke Seite ist nur null, wenn der Zähler null ist (und der Nenner nicht null ist). So lösen wir folgende Gleichung:

x+9=0,

Also x=9.

Indem wir x=9 in der ursprünglichen Gleichung substituieren, kontrollieren wir, ob die Lösung korrekt ist.

Linke Seite=939+3929+5=612714=22=0=Rechte Seite.