Lösung 2.1:6a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_6a.gif </center> {{NAVCONTENT_STOP}}) |
|||
(Der Versionsvergleich bezieht 7 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Zuerst vereinfachen wir die beiden Brüche und danach schreiben wir die Brüche mit gemeinsamen Nenner |
- | + | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
+ | x-y+\frac{x^{2}}{y-x} &= \frac{\left( x-y \right)\left( y-x \right)}{y-x}+\frac{x^{2}}{y-x} = \{\ y-x=-(x-y)\ \}\\[5pt] | ||
+ | &= \frac{-(x-y)^{2}}{y-x}+\frac{x^{2}}{y-x} = \frac{-(x-y)^{2}+x^{2}}{y-x}\\[5pt] | ||
+ | &= \frac{-(x^{2}-2xy+y^{2})+x^{2}}{y-x} = \frac{-x^{2}+2xy-y^{2}+x^{2}}{y-x}\\[5pt] | ||
+ | &= \frac{2xy-y^{2}}{y-x} = \frac{y(2x-y)}{y-x},\\[15pt] | ||
+ | \frac{y}{2x-y}-1 | ||
+ | &= \frac{y}{2x-y}-\frac{2x-y}{2x-y} = \frac{y-(2x-y)}{2x-y} = \frac{y-2x+y}{2x-y}\\[5pt] | ||
+ | & =\frac{2y-2x}{2x-y} = \frac{2(y-x)}{2x-y}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | Jetzt multiplizieren wir die beiden Faktoren und kürzen den Bruch so weit wie möglich | ||
+ | |||
+ | {{Abgesetzte Formel||<math>\biggl(x-y+\frac{x^{2}}{y-x}\biggr) \biggl(\frac{y}{2x-y}-1\biggr) = \frac{y(2x-y)}{y-x}\cdot\frac{2(y-x)}{2x-y}=2y\,\textrm{.}</math>}} |
Aktuelle Version
Zuerst vereinfachen wir die beiden Brüche und danach schreiben wir die Brüche mit gemeinsamen Nenner
\displaystyle \begin{align}
x-y+\frac{x^{2}}{y-x} &= \frac{\left( x-y \right)\left( y-x \right)}{y-x}+\frac{x^{2}}{y-x} = \{\ y-x=-(x-y)\ \}\\[5pt] &= \frac{-(x-y)^{2}}{y-x}+\frac{x^{2}}{y-x} = \frac{-(x-y)^{2}+x^{2}}{y-x}\\[5pt] &= \frac{-(x^{2}-2xy+y^{2})+x^{2}}{y-x} = \frac{-x^{2}+2xy-y^{2}+x^{2}}{y-x}\\[5pt] &= \frac{2xy-y^{2}}{y-x} = \frac{y(2x-y)}{y-x},\\[15pt] \frac{y}{2x-y}-1 &= \frac{y}{2x-y}-\frac{2x-y}{2x-y} = \frac{y-(2x-y)}{2x-y} = \frac{y-2x+y}{2x-y}\\[5pt] & =\frac{2y-2x}{2x-y} = \frac{2(y-x)}{2x-y}\,\textrm{.} \end{align} |
Jetzt multiplizieren wir die beiden Faktoren und kürzen den Bruch so weit wie möglich
\displaystyle \biggl(x-y+\frac{x^{2}}{y-x}\biggr) \biggl(\frac{y}{2x-y}-1\biggr) = \frac{y(2x-y)}{y-x}\cdot\frac{2(y-x)}{2x-y}=2y\,\textrm{.} |