Lösung 2.1:2a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Zuerst multiplizieren wir die Klammern miteinander, wobei jeder Term mit der ersten Klammer mit jedem Term in der zweiten Klammer multipliziert wird | |
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\ | (x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\ | ||
&= x^2-5x-4x+20-(6x^2-9x)\\ | &= x^2-5x-4x+20-(6x^2-9x)\\ | ||
Zeile 7: | Zeile 7: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Jetzt addieren wir alle ''x''²-, ''x''- und Konstantterme und vereinfachen den Ausdruck | |
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\ | \phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\ | ||
&= -5x^2+0+20\\ | &= -5x^2+0+20\\ | ||
&= \rlap{-5x^2+20\,\textrm{.}}\phantom{x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)} | &= \rlap{-5x^2+20\,\textrm{.}}\phantom{x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)} | ||
\end{align}</math>}} | \end{align}</math>}} |
Aktuelle Version
Zuerst multiplizieren wir die Klammern miteinander, wobei jeder Term mit der ersten Klammer mit jedem Term in der zweiten Klammer multipliziert wird
\displaystyle \begin{align}
(x-4)(x-5)-3x(2x-3)&= x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)\\ &= x^2-5x-4x+20-(6x^2-9x)\\ &=x^2-5x-4x+20-6x^2+9x\,\textrm{.} \end{align} |
Jetzt addieren wir alle x²-, x- und Konstantterme und vereinfachen den Ausdruck
\displaystyle \begin{align}
\phantom{(x-4)(x-5)-3x(2x-3)}&= (x^2-6x^2)+(-5x-4x+9x)+20 \\ &= -5x^2+0+20\\ &= \rlap{-5x^2+20\,\textrm{.}}\phantom{x\cdot x-x\cdot 5- 4\cdot x-4\cdot (-5)-(3x \cdot 2x-3x\cdot 3)} \end{align} |