Lösung 2.1:1c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (22:18, 8. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Der Faktor <math> -x^2 </math> kann wie <math>(-1)x^2</math> geschrieben werden und beide Faktoren werden mit der Klammer multipliziert
-
<!--center> [[Bild:2_1_1c.gif]] </center-->
+
-
The factor <math> -x^2 </math> can be written as <math>(-1)x^2 </math> and both factors can be multiplied into the bracket:
+
-
<math>
+
{{Abgesetzte Formel||<math>\begin{align}
-
\qquad
+
-x^2 (4-y^2) &= (-1)x^2(4-y^2)\\[3pt]
-
\begin{align}
+
&= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2\\[3pt]
-
-x^2 (4-y^2) &= (-1)x^2(4-y^2) \\
+
&= -4x^2 +x^2 y^2\,\textrm{.}
-
&= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2 \\
+
\end{align}</math>}}
-
&= -4x^2 +x^2 y^2.
+
-
\end{align}
+
-
</math>
+
-
 
+
-
 
+
-
{{NAVCONTENT_STOP}}
+

Aktuelle Version

Der Faktor \displaystyle -x^2 kann wie \displaystyle (-1)x^2 geschrieben werden und beide Faktoren werden mit der Klammer multipliziert

\displaystyle \begin{align}

-x^2 (4-y^2) &= (-1)x^2(4-y^2)\\[3pt] &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2\\[3pt] &= -4x^2 +x^2 y^2\,\textrm{.} \end{align}