2.1 Algebraische Ausdrücke

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 47: Zeile 47:
</div>
</div>
-
Das Distributivgesetz erklärt auch, wie ein Minuszeichen vor einer Klammer interpretiert werden soll, nämlich, dass ein Minuszeichen vor einer Klammer dasselbe ist, wie wenn man alle Zeichen in dem Ausdruck wechselt.
+
Das Distributivgesetz erklärt auch, wie ein Minuszeichen vor einer Klammer interpretiert werden soll. Nämlich, dass ein Minuszeichen vor einer Klammer dasselbe ist, wie wenn man alle Zeichen in dem Ausdruck wechselt.
<div class="exempel">
<div class="exempel">
Zeile 56: Zeile 56:
<li><math>-(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x
<li><math>-(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x
= -x^2 +x</math><br/>
= -x^2 +x</math><br/>
-
Wo wir uns im letzten Schritt von <math>-(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.}</math> verwendet haben</li>
+
Wobei wir im letzten Schritt <math>-(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.}</math> verwendet haben</li>
<li><math>-(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x
<li><math>-(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x
+ (-1) \cdot y -(-1)\cdot y^3</math><br/>
+ (-1) \cdot y -(-1)\cdot y^3</math><br/>
Zeile 94: Zeile 94:
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}}
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}}
-
Danach verwenden wir wieder das Distributivgesetz zweimal, und multiplizieren <math>c</math> und <math>d</math> mit ihren jeweiligen Klammern.
+
Danach verwenden wir wieder das Distributivgesetz zweimal und multiplizieren <math>c</math> und <math>d</math> mit ihren jeweiligen Klammern.
{{Abgesetzte Formel||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}}
{{Abgesetzte Formel||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}}
Zeile 167: Zeile 167:
== Differenz von zwei Quadraten ==
== Differenz von zwei Quadraten ==
-
Es gibt auch eine dritte binomische Formel, und diese lautet:
+
Es gibt auch eine dritte binomische Formel, diese lautet:
<div class="regel">
<div class="regel">
Zeile 197: Zeile 197:
== Rationale Ausdrücke ==
== Rationale Ausdrücke ==
-
Rechnungen mit rationalen Ausdrücken sind sehr ähnlich den Rechnungen mit Brüchen
+
Rechnungen mit rationalen Ausdrücken sind Rechnungen mit Brüchen sehr ähnlich.
Alle Rechenregeln, die für Brüche gelten, gelten auch für rationale Ausdrücke.
Alle Rechenregeln, die für Brüche gelten, gelten auch für rationale Ausdrücke.
Zeile 230: Zeile 230:
= \dots</math>}}
= \dots</math>}}
-
Das umgekehrte geht auch, nämlich dass man den Zähler und Nenner eines rationalen Ausdruckes jeweils durch denselben Ausdruck dividiert. Dies nennt man so wie bei Brüchen kürzen.
+
Dies gilt auch umgekehrt, nämlich, dass man den Zähler und Nenner eines rationalen Ausdrucks jeweils durch denselben Ausdruck dividiert. Dies wird wie bei Brüchen auch kürzen genannt.
{{Abgesetzte Formel||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
{{Abgesetzte Formel||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
Zeile 250: Zeile 250:
</div>
</div>
-
Wenn man Brüche addiert oder subtrahiert, muss man die Brüche zuerst erweitern, sodass sie einen gemeinsamen Nenner haben,
+
Wenn man Brüche addiert oder subtrahiert, muss man die Brüche zuerst erweitern, sodass sie einen gemeinsamen Nenner haben
Zeile 307: Zeile 307:
</div>
</div>
-
Um große Ausdrücke zu vereinfachen, kürzt man häufig die Brüche. Um Brüche zu kürzen, müssen die Brüche in ihre Faktoren zerlegt sein, sodass man die Faktoren erkennt. Deshalb sollten die Ausdrücke immer faktorisiert bleiben, bevor man mit den Rechnungen fertig ist.
+
Um große Ausdrücke zu vereinfachen, kürzt man häufig die Brüche. Um Brüche kürzen zu können, müssen sie in ihre Faktoren zerlegt werden, sodass man die Faktoren erkennt. Deshalb sollten die Ausdrücke immer faktorisiert bleiben, solange man nicht mit den Rechnungen fertig ist.

Version vom 13:48, 8. Aug. 2009

       Theorie          Übungen      

Inhalt:

  • Das Distributivgesetz
  • Binomische Formeln
  • Differenz von zwei Quadraten
  • Rationale Ausdrücke

Lernziele:

Nach diesem Abschnitt sollest Du folgendes können:

  • Algebraische Ausdrücke vereinfachen.
  • Algebraische Ausdrücke mit Hilfe der binomischen Formeln faktorisieren.
  • Algebraische Ausdrücke mit Hilfe der binomischen Formeln erweitern.

Das Distributivgesetz

Das Distributivgesetz ist die Regel für die Multiplikation von Klammern mit einem Faktor.


[Image]

Beispiel 1

  1. \displaystyle 4(x+y) = 4x + 4y
  2. \displaystyle 2(a-b) = 2a -2b
  3. \displaystyle x \left(\frac{1}{x} + \frac{1}{x^2} \right) = x\cdot \frac{1}{x} + x \cdot \frac{1}{x^2} = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} = 1 + \frac{1}{x}
  4. \displaystyle a(x+y+z) = ax + ay + az

Das Distributivgesetz erklärt auch, wie ein Minuszeichen vor einer Klammer interpretiert werden soll. Nämlich, dass ein Minuszeichen vor einer Klammer dasselbe ist, wie wenn man alle Zeichen in dem Ausdruck wechselt.

Beispiel 2

  1. \displaystyle -(x+y) = (-1) \cdot (x+y) = (-1)x + (-1)y = -x-y
  2. \displaystyle -(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x = -x^2 +x
    Wobei wir im letzten Schritt \displaystyle -(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.} verwendet haben
  3. \displaystyle -(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x + (-1) \cdot y -(-1)\cdot y^3
    \displaystyle \phantom{-(x+y-y^3)}{} = -x-y+y^3
  4. \displaystyle x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2
    \displaystyle \phantom{x^2-2x-(3x+2)}{} = x^2 -5x -2

Das Distributivgesetz kann auch in umgekehrter Reihenfolge angewendet werden. Dies nennt man "Ausklammern". Oft möchte man den größten gemeinsamen Nenner ausklammern.

Beispiel 3

  1. \displaystyle 3x +9y = 3x + 3\cdot 3y = 3(x+3y)
  2. \displaystyle xy + y^2 = xy + y\cdot y = y(x+y)
  3. \displaystyle 2x^2 -4x = 2x\cdot x - 2\cdot 2\cdot x = 2x(x-2)
  4. \displaystyle \frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1


Die binomischen Formeln

Das Distributivgesetz kann angewendet werden, um andere Rechenregeln herzuleiten. Wenn wir folgenden Ausdruck beachten

\displaystyle (a+b)(c+d)

und \displaystyle (a+b) als einen Faktor betrachten, der mit der Klammer \displaystyle (c+d) multipliziert wird, bekommen wir

\displaystyle \eqalign{
 \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
   &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
      + \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,d\mbox{,}\cr
 (a+b)\,(c+d)
   &= (a+b)\,c + (a+b)\,d\mbox{.}}

Danach verwenden wir wieder das Distributivgesetz zweimal und multiplizieren \displaystyle c und \displaystyle d mit ihren jeweiligen Klammern.

\displaystyle (a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}

Um sich an die Formel zu erinnern, kann man wie folgt denken:

[Image]

Beispiel 4

  1. \displaystyle (x+1)(x-2) = x\cdot x + x \cdot (-2) + 1 \cdot x + 1 \cdot (-2) = x^2 -2x+x-2
    \displaystyle \phantom{(x+1)(x-2)}{}=x^2 -x-2
  2. \displaystyle 3(x-y)(2x+1) = 3(x\cdot 2x + x\cdot 1 - y \cdot 2x - y \cdot 1) = 3(2x^2 +x-2xy-y)
    \displaystyle \phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y
  3. \displaystyle (1-x)(2-x) = 1\cdot 2 + 1 \cdot (-x) -x\cdot 2 - x\cdot (-x) = 2-x-2x+x^2
    \displaystyle \phantom{(1-x)(2-x)}{}=2-3x+x^2 wobei wir folgende Rechnung benutzt haben \displaystyle -x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2.

Es gibt zwei wichtige Sonderfälle von dieser Regel, nämlich wenn \displaystyle a+b und \displaystyle c+d gleich sind.

Binomische Formeln

\displaystyle (a+b)^2 = a^2 +2ab + b^2
\displaystyle (a-b)^2 = a^2 -2ab + b^2

Diese Regeln werden die erste und zweite binomische Formel genannt.

Beispiel 5

  1. \displaystyle (x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4
  2. \displaystyle (-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9
    wobei \displaystyle (-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}
  3. \displaystyle (x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2 = x^4 -8x^2 +16
  4. \displaystyle (x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)
    \displaystyle \phantom{(x+1)^2-(x-1)^2}{}= x^2 +2x +1 -x^2 + 2x-1
    \displaystyle \phantom{(x+1)^2-(x-1)^2}{} = 2x+2x = 4x
  5. \displaystyle (2x+4)(x+2) = 2(x+2)(x+2) = 2(x+2)^2 = 2(x^2 + 4x+ 4)
    \displaystyle \phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8
  6. \displaystyle (x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)
    \displaystyle \phantom{(x-2)^3}{}=x \cdot x^2 + x\cdot (-4x) + x\cdot 4 - 2\cdot x^2 - 2 \cdot (-4x)-2 \cdot 4
    \displaystyle \phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 = x^3-6x^2 + 12x -8

Die binomischen Formeln können auch rückwärts verwendet werden, um einen Ausdruck in seine Faktoren zu zerlegen.

Beispiel 6

  1. \displaystyle x^2 + 2x+ 1 = (x+1)^2
  2. \displaystyle x^6-4x^3 +4 = (x^3)^2 - 2\cdot 2x^3 +2^2 = (x^3-2)^2
  3. \displaystyle x^2 +x + \frac{1}{4} = x^2 + 2\cdot\frac{1}{2}x + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2


Differenz von zwei Quadraten

Es gibt auch eine dritte binomische Formel, diese lautet:

Die Differenz von zwei Quadraten:

\displaystyle (a+b)(a-b) = a^2 -b^2

Diese Formel kann hergeleitet werden, indem man das Distributivgesetz zweimal verwendet.

\displaystyle (a+b)(a-b)
 = a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
 = a^2 -ab+ab-b^2
 = a^2 -b^2\mbox{.}

Beispiel 7

  1. \displaystyle (x-4y)(x+4y) = x^2 -(4y)^2 = x^2 -16y^2
  2. \displaystyle (x^2+2x)(x^2-2x)= (x^2)^2 - (2x)^2 = x^4 -4x^2
  3. \displaystyle (y+3)(3-y)= (3+y)(3-y) = 3^2 -y^2 = 9-y^2
  4. \displaystyle x^4 -16 = (x^2)^2 -4^2 = (x^2+4)(x^2-4) = (x^2+4)(x^2-2^2)
    \displaystyle \phantom{x^4-16}{}=(x^2+4)(x+2)(x-2)


Rationale Ausdrücke

Rechnungen mit rationalen Ausdrücken sind Rechnungen mit Brüchen sehr ähnlich.

Alle Rechenregeln, die für Brüche gelten, gelten auch für rationale Ausdrücke.

\displaystyle \frac{a}{b} \cdot \frac{c}{d}
 = \frac{a\cdot c}{b\cdot d}
 \quad \mbox{und} \quad
 \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
 = \frac{a\cdot d}{b\cdot c} \; \mbox{.}

Beispiel 8

  1. \displaystyle \frac{3x}{x-y} \cdot \frac{4x}{2x+y} = \frac{3x\cdot 4x}{(x-y)\cdot(2x+y)} = \frac{12x^2}{(x-y)(2x+y)}
  2. \displaystyle \frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} = \frac{a^2}{x(x+1)}
  3. \displaystyle \frac{\displaystyle \frac{x}{(x+1)^2}}{\displaystyle \frac{x-2}{x-1}} = \frac{x(x-1)}{(x-2)(x+1)^2}

Man kann den Zähler und Nenner eines rationalen Ausdruckes mit jeweils demselben Ausdruck multiplizieren. Dies nennt man wie bei Brüchen Erweitern.

\displaystyle \frac{x+2}{x+1}
 = \frac{(x+2)(x+3)}{(x+1)(x+3)}
 = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
 = \dots

Dies gilt auch umgekehrt, nämlich, dass man den Zähler und Nenner eines rationalen Ausdrucks jeweils durch denselben Ausdruck dividiert. Dies wird wie bei Brüchen auch kürzen genannt.

\displaystyle \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
 = \frac{(x+2)(x+4)}{(x+1)(x+4)}
 = \frac{x+2}{x+1} \mbox{.}

Beispiel 9

  1. \displaystyle \frac{x}{x+1} = \frac{x}{x+1} \cdot \frac{x+2}{x+2} = \frac{x(x+2)}{(x+1)(x+2)}
  2. \displaystyle \frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}
  3. \displaystyle \frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} = \left\{\,\text{Binomische Formel}\,\right\} = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} = \frac{x-y}{x+2}

Wenn man Brüche addiert oder subtrahiert, muss man die Brüche zuerst erweitern, sodass sie einen gemeinsamen Nenner haben


\displaystyle \frac{1}{x} - \frac{1}{x-1}
 = \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x}
 = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
 = \frac{x-1-x}{x(x-1)}
 = \frac{-1}{x(x-1)} \; \mbox{.}

Um die Ausdrücke so klein wie möglich zu behalten, sollte man immer den kleinsten gemeinsamen Nenner der Brüche finden.

Beispiel 10

  1. \displaystyle \frac{1}{x+1} + \frac{1}{x+2}\quad hat den kleinsten gemeinsamen Nenner \displaystyle (x+1)(x+2)

    Wir erweitern den ersten Bruch mit \displaystyle (x+2) und den zweiten Bruch mit \displaystyle (x+1)
    \displaystyle \begin{align*}
       \frac{1}{x+1} + \frac{1}{x+2}
         &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
         &= \frac{x+2+x+1}{(x+1)(x+2)}
          = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.}
       \end{align*}
    
  2. \displaystyle \frac{1}{x} + \frac{1}{x^2}\quad hat den kleinsten gemeinsamen Nenner \displaystyle x^2

    Wir müssen nur den ersten Bruch erweitern, um den kleinsten gemeinsamen Nenner zu bekommen.
    \displaystyle \frac{1}{x} + \frac{1}{x^2}
       = \frac{x}{x^2} + \frac{1}{x^2}
       = \frac{x+1}{x^2}\,\mbox{.}
    
  3. \displaystyle \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad hat den kleinsten gemeinsamen Nenner \displaystyle x^2(x+1)^2(x+2)

    Wie erweitern den ersten Bruch mit \displaystyle x(x+2) und den zweiten Bruch mit \displaystyle (x+1)^2
    \displaystyle \begin{align*}
       \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
         &= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
            - \frac{(x+1)^2}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x}{x^2(x+1)^2(x+2)} - \frac{x^2+2x+1}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.}
       \end{align*}
    
  4. \displaystyle \frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad hat den kleinsten gemeinsamen Nenner \displaystyle x(x-1)(x+1)

    Wir müssen alle Brüche erweitern, sodass sie einen gemeinsamen Nenner haben \displaystyle x(x-1)(x+1)
    \displaystyle \begin{align*}
       \frac{x}{x+1} - \frac{1}{x(x-1)} -1
         &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
            - \frac{x(x-1)(x+1)}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
            - \frac{x^3 -x}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt]
         &= \frac{-x^2-1}{x(x-1)(x+1)}\,\mbox{.}
       \end{align*}
    

Um große Ausdrücke zu vereinfachen, kürzt man häufig die Brüche. Um Brüche kürzen zu können, müssen sie in ihre Faktoren zerlegt werden, sodass man die Faktoren erkennt. Deshalb sollten die Ausdrücke immer faktorisiert bleiben, solange man nicht mit den Rechnungen fertig ist.


Beispiel 11

  1. \displaystyle \frac{1}{x-2} - \frac{4}{x^2-4} = \frac{1}{x-2} - \frac{4}{(x+2)(x-2)} = \left\{\,\mbox{Kleinste gemeinsamer Nenner} = (x+2)(x-2)\,\right\}

    \displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2}{(x+2)(x-2)} - \frac{4}{(x+2)(x-2)}

    \displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2 -4}{(x+2)(x-2)} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2}
  2. \displaystyle \frac{x + \displaystyle \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2}{x} + \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2+1}{x}}{x^2+1} = \frac{x^2+1}{x(x^2+1)} = \frac{1}{x}
  3. \displaystyle \frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y} = \frac{\displaystyle \frac{y^2}{x^2y^2} - \frac{x^2}{x^2y^2}}{x+y} = \frac{\displaystyle \frac{y^2-x^2}{x^2y^2}}{x+y} = \frac{y^2-x^2}{x^2y^2(x+y)}

    \displaystyle \phantom{\smash{\frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}}}{} = \frac{(y+x)(y-x)}{x^2y^2(x+y)} = \frac{y-x}{x^2y^2}


Übungen


Tipps fürs Lernen

Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die Links zu den Prüfungen in Deiner "Student Lounge".


Bedenke folgendes:

Vorsicht! Ein Rechenfehler kann die ganze Rechnung zerstören.

Rechne lieber in mehreren Schritten als in einem Schritt, falls Du Dich unsicher fühlst.

Das Erweitern von Ausdrücken ist oft unnötig, da Du den Ausdruck später vielleicht kürzen musst.


Reviews

Mehr über Algebra in der Wikipedia

Understanding Algebra - ein englischer Text im Web