Lösung 1.3:4a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Aktuelle Version (13:29, 8. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 2 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
Because the base is the same in both factors, the exponents can be combined according to the power rules
+
Nachdem die beiden Potenzen dieselbe Basis haben, können wir die Rechenregel für Multiplikation von Potenzen verwenden
{{Abgesetzte Formel||<math>2^{9}\cdot 2^{-7} = 2^{9-7} = 2^{2} = 4\,</math>.}}
{{Abgesetzte Formel||<math>2^{9}\cdot 2^{-7} = 2^{9-7} = 2^{2} = 4\,</math>.}}
-
Alternatively, the expressions for the powers can be expanded completely and then cancelled out,
+
Alternativ kann man auch alle Terme explizit aufschreiben und kürzt den Bruch
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}
2^{9-7} &= 2\cdot 2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot \frac{1}{{}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2}\\[5pt]
2^{9-7} &= 2\cdot 2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot \frac{1}{{}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2}\\[5pt]
&= 2\cdot 2 = 4\,\textrm{.}\end{align}</math>}}
&= 2\cdot 2 = 4\,\textrm{.}\end{align}</math>}}

Aktuelle Version

Nachdem die beiden Potenzen dieselbe Basis haben, können wir die Rechenregel für Multiplikation von Potenzen verwenden

\displaystyle 2^{9}\cdot 2^{-7} = 2^{9-7} = 2^{2} = 4\,.

Alternativ kann man auch alle Terme explizit aufschreiben und kürzt den Bruch

\displaystyle \begin{align}

2^{9-7} &= 2\cdot 2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot \frac{1}{{}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2}\\[5pt] &= 2\cdot 2 = 4\,\textrm{.}\end{align}