Lösung 1.2:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:22, 8. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
Method 1
+
Erste Methode:
-
We calculate the numerator and denominator first.
+
Wir berechnen den Zähler und Nenner jeweils für sich
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\frac{3}{10}-\frac{1}{5} &= \frac{3}{10}-\frac{1\cdot 2}{5\cdot 2} = \frac{3-2}{10} = \frac{1}{10}\,,\\[10pt]
 +
\frac{7}{8}-\frac{3}{16} &= \frac{7\cdot 2}{8\cdot 2}-\frac{3}{16} = \frac{14-3}{16} = \frac{11}{16}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Und der Ausdruck wird also zu
-
& \frac{3}{10}-\frac{1}{5}=\frac{3}{10}-\frac{1\centerdot 2}{5\centerdot 2}=\frac{3-2}{10}=\frac{1}{10} \\
+
-
& \frac{7}{8}-\frac{3}{16}=\frac{7\centerdot 2}{8\centerdot 2}-\frac{3}{16}=\frac{14-3}{16}=\frac{11}{16} \\
+
-
\end{align}</math>
+
-
Thus, the expression becomes
+
{{Abgesetzte Formel||<math>\frac{\,\dfrac{3}{10}-\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{7}{8}-\dfrac{3}{16}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{10}\vphantom{\Biggl(}\,}{\,\dfrac{11}{16}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{10}\cdot \dfrac{16}{11}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{\,/}11}{\rlap{\,/}16}\cdot \dfrac{\rlap{\,/}16}{\rlap{\,/}11}\vphantom{\Biggl(}\,} = \dfrac{16}{10\cdot 11}</math>}}
 +
und nachdem <math>16=2\cdot 2\cdot 2\cdot 2</math> und <math>10=2\cdot 5</math>, wird der gekürzte Ausdruck
-
<math>\frac{\frac{3}{10}-\frac{1}{5}}{\frac{7}{8}-\frac{3}{16}}=\frac{\frac{1}{10}}{\frac{11}{16}}=\frac{\frac{1}{10}\centerdot \frac{16}{11}}{\frac{11}{16}\centerdot \frac{16}{11}}=\frac{16}{10\centerdot 11}</math>
+
{{Abgesetzte Formel||<math>\frac{16}{10\cdot 11} = \frac{\rlap{/}2\cdot 2\cdot 2\cdot 2}{\rlap{/}2\cdot 5\cdot 11} = \frac{8}{55}\,</math>.}}
 +
Zweite Methode:
-
and because
+
Die Teilbrüche 3/10, 1/5, 7/8 und 3/16 können in ihre Primfaktoren zerlegt werden
-
<math>16=2\centerdot 2\centerdot 2\centerdot 2</math>
+
-
and 10=2∙5
+
-
<math>10=2\centerdot 5</math>
+
-
, the simplified answer is
+
 +
{{Abgesetzte Formel||<math>10=2\cdot 5\,,\quad 8=2\cdot 2\cdot 2\,\quad\text{und}\quad
 +
16=2\cdot 2\cdot 2\cdot 2</math>}}
-
<math>\frac{16}{10\centerdot 11}=\frac{2\centerdot 2\centerdot 2\centerdot 2}{2\centerdot 5\centerdot 11}=\frac{8}{55}</math>
+
und daher ist 2∙2∙2∙2∙5 = 80 der kleinster gemeinsamer Nenner.
-
Method 2
+
Wenn wir den Hauptbruch mit 80 erweitern, bekommen wir
-
If we look at the individual fractions
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>{3}/{10}\;,\ \ {1}/{5,\ \ {7}/{8}\;}\;</math>
+
\frac{\,\dfrac{3}{10}-\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{7}{8}-\dfrac{3}{16}\vphantom{\Biggl(}\,}
-
and
+
&= \frac{\,\left( \dfrac{3}{10}-\dfrac{1}{5} \right)\cdot 80\vphantom{\Biggl(}\,}{\,\left( \dfrac{7}{8}-\dfrac{3}{16} \right)\cdot 80\vphantom{\Biggl(}\,} = \frac{\dfrac{3\cdot 80}{10}-\dfrac{1\cdot 80}{5}\vphantom{\Biggl(}\,}{\,\dfrac{7\cdot 80}{8}-\dfrac{3\cdot 80}{16}\vphantom{\Biggl(}\,}\\[10pt]
-
<math>{3}/{16}\;</math>
+
&= \frac{\,\dfrac{3\cdot 8\cdot{}\rlap{\,/}10}{\rlap{\,/}10}-\dfrac{8\cdot 2\cdot{}\rlap{/}5}{\rlap{/}5}\vphantom{\Biggl(}\,}{\,\dfrac{7\cdot{}\rlap{/}8\cdot 10}{\rlap{/}8}-\dfrac{3\cdot{}\rlap{\,/}16\cdot 5}{\rlap{\,/}16}\vphantom{\Biggl(}\,} = \dfrac{3\cdot 8-8\cdot 2}{7\cdot 10-3\cdot } = \frac{8}{55}\,\textrm{.}
-
, we see that the denominators can be factorized as
+
\end{align}</math>}}
-
 
+
-
 
+
-
<math>10=2\centerdot 5,\ 8=2\centerdot 2\centerdot 2</math>
+
-
 
+
-
<math>10=2\centerdot 5,\quad 8=2\centerdot 2\centerdot 2</math>
+
-
and
+
-
<math>16=2\centerdot 2\centerdot 2\centerdot 2</math>
+
-
 
+
-
 
+
-
and therefore 2∙2∙2∙2∙5 is the fractions' lowest common denominator.
+
-
 
+
-
If we multiply the top and bottom of the main fraction by
+
-
<math>80</math>
+
-
, then it will be possible to eliminate all denominators at once,
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \frac{\frac{3}{10}-\frac{1}{5}}{\frac{7}{8}-\frac{3}{16}}=\frac{\left( \frac{3}{10}-\frac{1}{5} \right)\centerdot 80}{\left( \frac{7}{8}-\frac{3}{16} \right)\centerdot 80}=\frac{\frac{3\centerdot 80}{10}-\frac{1\centerdot 80}{5}}{\frac{7\centerdot 80}{8}-\frac{3\centerdot 80}{16}} \\
+
-
& \\
+
-
& =\frac{\frac{3\centerdot 8\centerdot 10}{10}-\frac{8\centerdot 2\centerdot 5}{5}}{\frac{7\centerdot 8\centerdot 10}{8}-\frac{3\centerdot 16\centerdot 5}{16}}=\frac{3\centerdot 8-8\centerdot 2}{7\centerdot 10-3\centerdot }=\frac{8}{55} \\
+
-
& \\
+
-
\end{align}</math>
+

Aktuelle Version

Erste Methode:

Wir berechnen den Zähler und Nenner jeweils für sich

\displaystyle \begin{align}

\frac{3}{10}-\frac{1}{5} &= \frac{3}{10}-\frac{1\cdot 2}{5\cdot 2} = \frac{3-2}{10} = \frac{1}{10}\,,\\[10pt] \frac{7}{8}-\frac{3}{16} &= \frac{7\cdot 2}{8\cdot 2}-\frac{3}{16} = \frac{14-3}{16} = \frac{11}{16}\,\textrm{.} \end{align}

Und der Ausdruck wird also zu

\displaystyle \frac{\,\dfrac{3}{10}-\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{7}{8}-\dfrac{3}{16}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{10}\vphantom{\Biggl(}\,}{\,\dfrac{11}{16}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{10}\cdot \dfrac{16}{11}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{\,/}11}{\rlap{\,/}16}\cdot \dfrac{\rlap{\,/}16}{\rlap{\,/}11}\vphantom{\Biggl(}\,} = \dfrac{16}{10\cdot 11}

und nachdem \displaystyle 16=2\cdot 2\cdot 2\cdot 2 und \displaystyle 10=2\cdot 5, wird der gekürzte Ausdruck

\displaystyle \frac{16}{10\cdot 11} = \frac{\rlap{/}2\cdot 2\cdot 2\cdot 2}{\rlap{/}2\cdot 5\cdot 11} = \frac{8}{55}\,.

Zweite Methode:

Die Teilbrüche 3/10, 1/5, 7/8 und 3/16 können in ihre Primfaktoren zerlegt werden

\displaystyle 10=2\cdot 5\,,\quad 8=2\cdot 2\cdot 2\,\quad\text{und}\quad

16=2\cdot 2\cdot 2\cdot 2

und daher ist 2∙2∙2∙2∙5 = 80 der kleinster gemeinsamer Nenner.

Wenn wir den Hauptbruch mit 80 erweitern, bekommen wir

\displaystyle \begin{align}

\frac{\,\dfrac{3}{10}-\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{7}{8}-\dfrac{3}{16}\vphantom{\Biggl(}\,} &= \frac{\,\left( \dfrac{3}{10}-\dfrac{1}{5} \right)\cdot 80\vphantom{\Biggl(}\,}{\,\left( \dfrac{7}{8}-\dfrac{3}{16} \right)\cdot 80\vphantom{\Biggl(}\,} = \frac{\dfrac{3\cdot 80}{10}-\dfrac{1\cdot 80}{5}\vphantom{\Biggl(}\,}{\,\dfrac{7\cdot 80}{8}-\dfrac{3\cdot 80}{16}\vphantom{\Biggl(}\,}\\[10pt] &= \frac{\,\dfrac{3\cdot 8\cdot{}\rlap{\,/}10}{\rlap{\,/}10}-\dfrac{8\cdot 2\cdot{}\rlap{/}5}{\rlap{/}5}\vphantom{\Biggl(}\,}{\,\dfrac{7\cdot{}\rlap{/}8\cdot 10}{\rlap{/}8}-\dfrac{3\cdot{}\rlap{\,/}16\cdot 5}{\rlap{\,/}16}\vphantom{\Biggl(}\,} = \dfrac{3\cdot 8-8\cdot 2}{7\cdot 10-3\cdot } = \frac{8}{55}\,\textrm{.} \end{align}