Lösung 1.2:5a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:18, 8. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We begin by calculating the numerator in the main fraction:
+
Wir berechnen zuerst den Nenner des Hauptbruches,
 +
{{Abgesetzte Formel||<math>\frac{2}{\,\dfrac{1}{7}-\dfrac{1}{15}\vphantom{\Biggl(}\,} = \frac{2}{\,\dfrac{1\cdot 15}{7\cdot 15}-\dfrac{1\cdot 7}{15\cdot 7}\vphantom{\Biggl(}\,} = \frac{2}{\,\dfrac{15-7}{7\cdot 15}\vphantom{\Biggl(}\,} = \frac{2}{\,\dfrac{8}{7\cdot 15}\vphantom{\Biggl(}\,}\,</math>.}}
-
<math>\frac{2}{\frac{1}{7}-\frac{1}{15}}=\frac{2}{\frac{1\centerdot 15}{7\centerdot 15}-\frac{1\centerdot 7}{15\centerdot 7}}=\frac{2}{\frac{15-7}{7\centerdot 15}}=\frac{2}{\frac{8}{7\centerdot 15}}</math>
+
und erweitern den Hauptbruch mit dem Kehrwert des unteren Bruches
 +
{{Abgesetzte Formel||<math>\frac{2}{\,\dfrac{8}{7\cdot 15}\vphantom{\Biggl(}\,} = \frac{\,2\cdot \dfrac{7\cdot 15}{8}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}8}{\rlap{/}7\cdot{}\rlap{\,/}15}\cdot \dfrac{\rlap{/}7\cdot{}\rlap{\,/}15}{\rlap{/}8}\vphantom{\Biggl(}\,} = \frac{2\cdot 7\cdot 15}{8}\,</math>.}}
-
Note that we keep
+
Wenn wir jetzt 8 und 15 in ihre Primfaktoren zerlegen, können wir den Bruch kürzen und bekommen
-
<math>7\centerdot 15</math>
+
-
as it is, and do not multiply it to give
+
-
<math>105</math>
+
-
, because this will make the task
+
-
of cancellation later simpler. We calculate the fraction on the right-hand side by multiplying top and bottom by
+
-
<math>7\centerdot {15}/{8}\;</math>
+
-
:
+
-
 
+
{{Abgesetzte Formel||<math>\frac{2\cdot 7\cdot 15}{8}=\frac{\rlap{/}2\cdot 7\cdot 3\cdot 5}{\rlap{/}2\cdot 2\cdot 2}=\frac{7\cdot 3\cdot 5}{2\cdot 2}=\frac{105}{4}\,</math>.}}
-
<math>\frac{2}{\frac{8}{7\centerdot 15}}=\frac{2\centerdot \frac{7\centerdot 5}{8}}{\frac{8}{7\centerdot 15}\centerdot \frac{7\centerdot 5}{8}}=\frac{2\centerdot 7\centerdot 15}{8}</math>
+
-
 
+
-
 
+
-
If we now divide up
+
-
<math>8</math>
+
-
and
+
-
<math>15</math>
+
-
into their smallest possible integer factors,
+
-
<math>8=2\centerdot 2\centerdot 2</math>
+
-
and
+
-
<math>15=3\centerdot 5</math>
+
-
, we see that the answer in simplified form will be
+
-
 
+
-
 
+
-
<math>\frac{2\centerdot 7\centerdot 15}{8}=\frac{2\centerdot 7\centerdot 3\centerdot 5}{2\centerdot 2\centerdot 2}=\frac{7\centerdot 3\centerdot 5}{2\centerdot 2}=\frac{105}{4}</math>
+

Aktuelle Version

Wir berechnen zuerst den Nenner des Hauptbruches,

\displaystyle \frac{2}{\,\dfrac{1}{7}-\dfrac{1}{15}\vphantom{\Biggl(}\,} = \frac{2}{\,\dfrac{1\cdot 15}{7\cdot 15}-\dfrac{1\cdot 7}{15\cdot 7}\vphantom{\Biggl(}\,} = \frac{2}{\,\dfrac{15-7}{7\cdot 15}\vphantom{\Biggl(}\,} = \frac{2}{\,\dfrac{8}{7\cdot 15}\vphantom{\Biggl(}\,}\,.

und erweitern den Hauptbruch mit dem Kehrwert des unteren Bruches

\displaystyle \frac{2}{\,\dfrac{8}{7\cdot 15}\vphantom{\Biggl(}\,} = \frac{\,2\cdot \dfrac{7\cdot 15}{8}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}8}{\rlap{/}7\cdot{}\rlap{\,/}15}\cdot \dfrac{\rlap{/}7\cdot{}\rlap{\,/}15}{\rlap{/}8}\vphantom{\Biggl(}\,} = \frac{2\cdot 7\cdot 15}{8}\,.

Wenn wir jetzt 8 und 15 in ihre Primfaktoren zerlegen, können wir den Bruch kürzen und bekommen

\displaystyle \frac{2\cdot 7\cdot 15}{8}=\frac{\rlap{/}2\cdot 7\cdot 3\cdot 5}{\rlap{/}2\cdot 2\cdot 2}=\frac{7\cdot 3\cdot 5}{2\cdot 2}=\frac{105}{4}\,.