Lösung 1.2:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:18, 8. Aug. 2009) (bearbeiten) (rückgängig)
 
Zeile 24: Zeile 24:
{{Abgesetzte Formel||<math>\frac{\,\dfrac{1}{4}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,}-\frac{\,\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{4}\cdot \dfrac{10}{3}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}3}{\rlap{\,/}10}\cdot \dfrac{\rlap{\,/}10}{\rlap{/}3}\vphantom{\Biggl(}\,}-\frac{\,\dfrac{1}{5}\cdot \dfrac{10}{3}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}3}{\rlap{\,/}10}\cdot \dfrac{\rlap{\,/}10}{\rlap{/}3}\vphantom{\Biggl(}\,} = \frac{1}{4}\cdot \frac{10}{3}-\frac{1}{5}\cdot \frac{10}{3}\,</math>.}}
{{Abgesetzte Formel||<math>\frac{\,\dfrac{1}{4}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,}-\frac{\,\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{4}\cdot \dfrac{10}{3}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}3}{\rlap{\,/}10}\cdot \dfrac{\rlap{\,/}10}{\rlap{/}3}\vphantom{\Biggl(}\,}-\frac{\,\dfrac{1}{5}\cdot \dfrac{10}{3}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}3}{\rlap{\,/}10}\cdot \dfrac{\rlap{\,/}10}{\rlap{/}3}\vphantom{\Biggl(}\,} = \frac{1}{4}\cdot \frac{10}{3}-\frac{1}{5}\cdot \frac{10}{3}\,</math>.}}
-
Den kleinsten gemeinsamen Nenner erhalten wir indem wir den ersten Bruch mit 5, und den zweiten Bruch mit 4 erweitern
+
Den kleinsten gemeinsamen Nenner erhalten wir indem wir den ersten Bruch mit 5 und den zweiten Bruch mit 4 erweitern
{{Abgesetzte Formel||<math>\frac{10}{4\cdot 3}-\frac{10}{5\cdot 3}=\frac{10\cdot 5}{4\cdot 3\cdot 5}-\frac{10\cdot 4}{5\cdot 3\cdot 4}=\frac{50-40}{3\cdot 4\cdot 5}=\frac{10}{3\cdot 4\cdot 5}\,</math>.}}
{{Abgesetzte Formel||<math>\frac{10}{4\cdot 3}-\frac{10}{5\cdot 3}=\frac{10\cdot 5}{4\cdot 3\cdot 5}-\frac{10\cdot 4}{5\cdot 3\cdot 4}=\frac{50-40}{3\cdot 4\cdot 5}=\frac{10}{3\cdot 4\cdot 5}\,</math>.}}
-
Nachdem <math>10=2\cdot 5</math> und <math>4=2\cdot 2</math>, kürzen wir den Bruch mit den gemeinsamen Faktoren 2 und 5, und erhalten
+
Nachdem <math>10=2\cdot 5</math> und <math>4=2\cdot 2</math> kürzen wir den Bruch mit den gemeinsamen Faktoren 2 und 5 und erhalten
{{Abgesetzte Formel||<math>\frac{10}{3\cdot 4\cdot 5}=\frac{\rlap{/}2{}\cdot{}\rlap{/}5}{3\cdot 2\cdot{}\rlap{/}2\cdot{}\rlap{/}5}=\frac{1}{3\cdot 2}=\frac{1}{6}\,</math>.}}
{{Abgesetzte Formel||<math>\frac{10}{3\cdot 4\cdot 5}=\frac{\rlap{/}2{}\cdot{}\rlap{/}5}{3\cdot 2\cdot{}\rlap{/}2\cdot{}\rlap{/}5}=\frac{1}{3\cdot 2}=\frac{1}{6}\,</math>.}}

Aktuelle Version

Erste Methode:

Wenn wir zuerst den Zähler in den Hauptbruch berechnen, bekommen wir

\displaystyle \frac{\,\dfrac{1}{4}-\dfrac{1}{5}\vphantom{\Biggl(}\,}{\dfrac{3}{10}\vphantom{\Biggl(}} =\frac{\,\dfrac{1\cdot 5}{4\cdot 5}-\dfrac{1\cdot 4}{5\cdot 4}\vphantom{\Biggl(}\,}{\dfrac{3}{10}\vphantom{\Biggl(}} =\frac{\,\dfrac{5}{20}-\dfrac{4}{20}\vphantom{\Biggl(}\,}{\dfrac{3}{10}\vphantom{\Biggl(}} = \frac{\,\dfrac{1}{20}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,}\,.

Wir erweitern jetzt den Hauptbruch mit dem Kehrwert des unteren Bruches, also \displaystyle {10}/{3}\,,

\displaystyle \frac{\,\dfrac{1}{20}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{20}\cdot \dfrac{10}{3}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}3}{\rlap{\,/}10}\cdot \dfrac{\rlap{\,/}10}{\rlap{/}3}\vphantom{\Biggl(}\,} = \dfrac{1}{20}\cdot \dfrac{10}{3}\,.

Danach kürzen wir den Bruch mit den gemeinsamen Faktor 10,

\displaystyle \dfrac{1}{20}\cdot \dfrac{10}{3}=\dfrac{1}{2\cdot{}\rlap{\,/}10}\cdot \dfrac{\rlap{\,/}10}{3}=\dfrac{1}{2\cdot 3}=\dfrac{1}{6}\,.


Zweite Methode:

Wir können auch den Hauptbruch als zwei Brüche schreiben,

\displaystyle \frac{\,\dfrac{1}{4}-\dfrac{1}{5}\vphantom{\Biggl(}\,}{\dfrac{3}{10}\vphantom{\Biggl(}} = \frac{\,\dfrac{1}{4}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,}-\frac{\,\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,}\,.

Und erweitern beide Hauptbrüche mit dem Kehrwert des unteren Bruches, also \displaystyle 10/3

\displaystyle \frac{\,\dfrac{1}{4}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,}-\frac{\,\dfrac{1}{5}\vphantom{\Biggl(}\,}{\,\dfrac{3}{10}\vphantom{\Biggl(}\,} = \frac{\,\dfrac{1}{4}\cdot \dfrac{10}{3}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}3}{\rlap{\,/}10}\cdot \dfrac{\rlap{\,/}10}{\rlap{/}3}\vphantom{\Biggl(}\,}-\frac{\,\dfrac{1}{5}\cdot \dfrac{10}{3}\vphantom{\Biggl(}\,}{\,\dfrac{\rlap{/}3}{\rlap{\,/}10}\cdot \dfrac{\rlap{\,/}10}{\rlap{/}3}\vphantom{\Biggl(}\,} = \frac{1}{4}\cdot \frac{10}{3}-\frac{1}{5}\cdot \frac{10}{3}\,.

Den kleinsten gemeinsamen Nenner erhalten wir indem wir den ersten Bruch mit 5 und den zweiten Bruch mit 4 erweitern

\displaystyle \frac{10}{4\cdot 3}-\frac{10}{5\cdot 3}=\frac{10\cdot 5}{4\cdot 3\cdot 5}-\frac{10\cdot 4}{5\cdot 3\cdot 4}=\frac{50-40}{3\cdot 4\cdot 5}=\frac{10}{3\cdot 4\cdot 5}\,.

Nachdem \displaystyle 10=2\cdot 5 und \displaystyle 4=2\cdot 2 kürzen wir den Bruch mit den gemeinsamen Faktoren 2 und 5 und erhalten

\displaystyle \frac{10}{3\cdot 4\cdot 5}=\frac{\rlap{/}2{}\cdot{}\rlap{/}5}{3\cdot 2\cdot{}\rlap{/}2\cdot{}\rlap{/}5}=\frac{1}{3\cdot 2}=\frac{1}{6}\,.