Lösung 2.1:3e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3e.gif </center> {{NAVCONTENT_STOP}}) |
|||
| (Der Versionsvergleich bezieht 8 dazwischen liegende Versionen mit ein.) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | Beide Terme enthalten ''x'', also können wir den Ausdruck faktorisieren wie |
| - | < | + | |
| - | {{ | + | {{Abgesetzte Formel||<math>18x-2x^3=2x\cdot 9-2x \cdot x^2=2x(9-x^2)\,\textrm{.}</math>}} |
| + | |||
| + | Der Faktor <math> 9-x^2 </math> kann mit der binomischen Formel faktorisiert werden | ||
| + | |||
| + | {{Abgesetzte Formel||<math> 2x(9-x^2)=2x(3^2-x^2)=2x(3+x)(3-x)=-2x(x+3)(x-3)\,.</math>}} | ||
Aktuelle Version
Beide Terme enthalten x, also können wir den Ausdruck faktorisieren wie
| \displaystyle 18x-2x^3=2x\cdot 9-2x \cdot x^2=2x(9-x^2)\,\textrm{.} |
Der Faktor \displaystyle 9-x^2 kann mit der binomischen Formel faktorisiert werden
| \displaystyle 2x(9-x^2)=2x(3^2-x^2)=2x(3+x)(3-x)=-2x(x+3)(x-3)\,. |
