Lösung 1.2:6

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(eine Zahl war nicht richtig zu sehen)
Zeile 15: Zeile 15:
{{Abgesetzte Formel||<math>\frac{\dfrac{4}{7}-6\vphantom{\Biggl(}}{\dfrac{1}{2}-\dfrac{21}{12}\vphantom{\Biggl(}}\,</math>.}}
{{Abgesetzte Formel||<math>\frac{\dfrac{4}{7}-6\vphantom{\Biggl(}}{\dfrac{1}{2}-\dfrac{21}{12}\vphantom{\Biggl(}}\,</math>.}}
-
Indem wir den Hauptbruch mit dem gemeinsamen Nenner von 4/7, 1/2 and 21/12, also <math> 7\cdot 12 </math>, erweitern, bekommen wir einen Bruch ohne Teilbrüche
+
Indem wir den Hauptbruch mit dem gemeinsamen Nenner von 4/7, 1/2 and 21/12, also <math> 7\cdot 12 </math> , erweitern, bekommen wir einen Bruch ohne Teilbrüche
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}

Version vom 09:46, 4. Aug. 2009

Bei großen Ausdrücken wie dieser, ist es oft am besten in mehreren Schritten zu arbeiten. Wir beginnen damit folgende Brüche zu vereinfachen

\displaystyle \frac{2}{\,3+\dfrac{1}{2}\vphantom{\Biggl(}\,}\ ,\quad \frac{\dfrac{1}{2}\vphantom{\Biggl(}}{\,\dfrac{1}{4}-\dfrac{1}{3}\vphantom{\Biggl(}\,}\quad\text{und}\quad\frac{3}{\,2-\dfrac{2}{7}\vphantom{\Biggl(}\,}\,.

Dies kann man machen, indem man die Brüche mit jeweils 2, 12 und 7 erweitert

\displaystyle \begin{align}

\frac{2}{3+\dfrac{1}{2}\vphantom{\Biggl(}} &= \frac{2\cdot 2}{\left( 3+\dfrac{1}{2} \right)\cdot 2\vphantom{\Biggl(}} = \frac{4}{3\cdot 2+\dfrac{1}{2}\cdot 2\vphantom{\Biggl(}} = \frac{4}{6+1} = \frac{4}{7}\,,\\[5pt] \frac{\dfrac{1}{2}\vphantom{\Biggl(}}{\dfrac{1}{4}-\dfrac{1}{3}\vphantom{\Biggl(}} &= \frac{\dfrac{1}{2}\cdot 12\vphantom{\Biggl(}}{\left( \dfrac{1}{4}-\dfrac{1}{3} \right)\cdot 12\vphantom{\Biggl(}} = \frac{6}{\dfrac{12}{4}-\dfrac{12}{3}\vphantom{\Biggl(}} = \frac{6}{3-4} = \frac{6}{-1} = -6\,,\\[10pt] \frac{3}{2-\dfrac{2}{7}\vphantom{\Biggl(}} &= \frac{3\cdot 7}{\left( 2-\dfrac{2}{7} \right)\cdot 7\vphantom{\Biggl(}} = \frac{21}{2\cdot 7-\dfrac{2}{7}\cdot 7\vphantom{\Biggl(}} = \frac{21}{14-2} = \frac{21}{12}\,\textrm{.} \end{align}

Also ist der ganze Ausdruck

\displaystyle \frac{\dfrac{4}{7}-6\vphantom{\Biggl(}}{\dfrac{1}{2}-\dfrac{21}{12}\vphantom{\Biggl(}}\,.

Indem wir den Hauptbruch mit dem gemeinsamen Nenner von 4/7, 1/2 and 21/12, also \displaystyle 7\cdot 12 , erweitern, bekommen wir einen Bruch ohne Teilbrüche

\displaystyle \begin{align}

\frac{\dfrac{4}{7}-6\vphantom{\Biggl(}}{\dfrac{1}{2}-\dfrac{21}{12}\vphantom{\Biggl(}} &= \frac{\left( \dfrac{4}{7}-6 \right)\cdot 7\cdot 12\vphantom{\Biggl(}}{\left( \dfrac{1}{2}-\dfrac{21}{12} \right)\cdot 7\cdot 12\vphantom{\Biggl(}} = \frac{4\cdot 12-6\cdot 7\cdot 12}{7\cdot 6-21\cdot 7}\\[10pt] & =\frac{( 4-6\cdot 7)\cdot 12}{( 6-21)\cdot 7} = \frac{-38\cdot 12}{-15\cdot 7} = \frac{38\cdot 12}{15\cdot 7}\,\textrm{.} \end{align}

Durch Zerteilung von 12, 15 und 38, in Primfaktoren,

\displaystyle \begin{align}

12 &= 2\cdot 6 = 2\cdot 2\cdot 3\,,\\ 15 &= 3\cdot 5\,,\\ 38 &= 2\cdot 19\,,\\ \end{align}

Kann der Bruch noch gekürzt werden

\displaystyle \frac{38\cdot 12}{15\cdot 7}=\frac{2\cdot 19\cdot 2\cdot 2\cdot{}\rlap{/}3}{\rlap{/}3\cdot 5\cdot 7}=\frac{152}{35}\,.