Lösung 4.2:3f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 10: | Zeile 10: | ||
{| width="100%" | {| width="100%" | ||
- | |width="50%" align="center"|[[Image: | + | |width="50%" align="center"|[[Image:4_2_3_f3_de.gif]] |
|width="50%" align="left"|<math>\begin{align}\text{Gegenkathete} &= 1\cdot\sin\frac{\pi}{6} = \frac{1}{2}\\[5pt] \text{Ankathete} &= 1\cdot\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}\end{align}</math> | |width="50%" align="left"|<math>\begin{align}\text{Gegenkathete} &= 1\cdot\sin\frac{\pi}{6} = \frac{1}{2}\\[5pt] \text{Ankathete} &= 1\cdot\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}\end{align}</math> | ||
|} | |} | ||
Die Koordinaten des Punktes auf den Einheitskreis entsprechen dem Winkel <math>-\pi/6</math> und sind also <math>(\sqrt{3}/2,-1/2)</math>. Inbesondere ist <math>\cos (-\pi/6) = \sqrt{3}/2\,</math>. | Die Koordinaten des Punktes auf den Einheitskreis entsprechen dem Winkel <math>-\pi/6</math> und sind also <math>(\sqrt{3}/2,-1/2)</math>. Inbesondere ist <math>\cos (-\pi/6) = \sqrt{3}/2\,</math>. |
Version vom 15:48, 30. Jul. 2009
Der Punkt auf den Einheitskreis, der dem Winkel \displaystyle -\pi/6 entspricht, liegt im vierten Quadranten:
Wir betrachten ein Dreieck im vierten Quadranten:
Wir berechnen zuerst die Katheten des Dreieckes und danach die Koordinaten des Punktes.
\displaystyle \begin{align}\text{Gegenkathete} &= 1\cdot\sin\frac{\pi}{6} = \frac{1}{2}\\[5pt] \text{Ankathete} &= 1\cdot\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}\end{align} |
Die Koordinaten des Punktes auf den Einheitskreis entsprechen dem Winkel \displaystyle -\pi/6 und sind also \displaystyle (\sqrt{3}/2,-1/2). Inbesondere ist \displaystyle \cos (-\pi/6) = \sqrt{3}/2\,.