Lösung 4.4:2f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Durch den Einheitskreis sehen wir dass die Gleichung <math>\cos 3x = -1/\!\sqrt{2}</math> zwei Lösungen im Intervall <math>0\le 3x\le 2\pi\,</math> hat,
+
Durch den Einheitskreis sehen wir, dass die Gleichung <math>\cos 3x = -1/\!\sqrt{2}</math> zwei Lösungen im Intervall <math>0\le 3x\le 2\pi\,</math> hat:
{{Abgesetzte Formel||<math>3x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}\qquad\text{und}\qquad 3x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>3x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}\qquad\text{und}\qquad 3x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}\,\textrm{.}</math>}}
Zeile 5: Zeile 5:
[[Image:4_4_2_f.gif|center]]
[[Image:4_4_2_f.gif|center]]
-
Wir addieren einen Multipel von <math>2\pi</math> um die allgemeine Lösung zu erhalten,
+
Wir addieren ein Vielfaches von <math>2\pi</math>, um die allgemeine Lösung zu erhalten:
{{Abgesetzte Formel||<math>3x = \frac{3\pi}{4} + 2n\pi\qquad\text{und}\qquad 3x = \frac{5\pi}{4} + 2n\pi\,,</math>}}
{{Abgesetzte Formel||<math>3x = \frac{3\pi}{4} + 2n\pi\qquad\text{und}\qquad 3x = \frac{5\pi}{4} + 2n\pi\,,</math>}}
-
oder, nach Division durch 3,
+
oder nach Division durch 3:
{{Abgesetzte Formel||<math>x = \frac{\pi}{4} + \frac{2}{3}n\pi\qquad\text{und}\qquad x = \frac{5\pi}{12} + \frac{2}{3}n\pi\,,</math>}}
{{Abgesetzte Formel||<math>x = \frac{\pi}{4} + \frac{2}{3}n\pi\qquad\text{und}\qquad x = \frac{5\pi}{12} + \frac{2}{3}n\pi\,,</math>}}

Version vom 14:24, 19. Jun. 2009

Durch den Einheitskreis sehen wir, dass die Gleichung \displaystyle \cos 3x = -1/\!\sqrt{2} zwei Lösungen im Intervall \displaystyle 0\le 3x\le 2\pi\, hat:

\displaystyle 3x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}\qquad\text{und}\qquad 3x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}\,\textrm{.}

Wir addieren ein Vielfaches von \displaystyle 2\pi, um die allgemeine Lösung zu erhalten:

\displaystyle 3x = \frac{3\pi}{4} + 2n\pi\qquad\text{und}\qquad 3x = \frac{5\pi}{4} + 2n\pi\,,

oder nach Division durch 3:

\displaystyle x = \frac{\pi}{4} + \frac{2}{3}n\pi\qquad\text{und}\qquad x = \frac{5\pi}{12} + \frac{2}{3}n\pi\,,