Lösung 4.3:4e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-[[Bild: +[[Image:))
Aktuelle Version (10:48, 19. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Durch das Additionstheorem erhalten wir
-
<center> [[Image:4_3_4e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Abgesetzte Formel||<math>\sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.}</math>}}
 +
 
 +
Von Übung b wissen wir, dass <math>\sin v = \sqrt{1-b^2}</math>. Wir benutzen
 +
<math>\cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2}</math> und erhalten
 +
 
 +
{{Abgesetzte Formel||<math>\sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.}</math>}}

Aktuelle Version

Durch das Additionstheorem erhalten wir

\displaystyle \sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.}

Von Übung b wissen wir, dass \displaystyle \sin v = \sqrt{1-b^2}. Wir benutzen \displaystyle \cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2} und erhalten

\displaystyle \sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.}