Lösung 4.3:4e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:4_3_4e.gif </center> {{NAVCONTENT_STOP}}) |
K |
||
(Der Versionsvergleich bezieht 7 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Durch das Additionstheorem erhalten wir |
- | < | + | |
- | {{ | + | {{Abgesetzte Formel||<math>\sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.}</math>}} |
+ | |||
+ | Von Übung b wissen wir, dass <math>\sin v = \sqrt{1-b^2}</math>. Wir benutzen | ||
+ | <math>\cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2}</math> und erhalten | ||
+ | |||
+ | {{Abgesetzte Formel||<math>\sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.}</math>}} |
Aktuelle Version
Durch das Additionstheorem erhalten wir
\displaystyle \sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.} |
Von Übung b wissen wir, dass \displaystyle \sin v = \sqrt{1-b^2}. Wir benutzen \displaystyle \cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2} und erhalten
\displaystyle \sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.} |