Lösung 4.1:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:41, 16. Jun. 2009) (bearbeiten) (rückgängig)
(Sprache und Formulierung)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
In this right-angled triangle, the side of length
+
Nachdem das Dreieck rechtwinklig ist, benutzen wir den Satz des Pythagoras, um die Seite x zu bestimmen.
-
<math>\text{17}</math>
+
-
is the hypotenuse (it is the side which is opposite the right angle). Pythagoras' theorem then gives
+
 +
{{Abgesetzte Formel||<math>17^2 = 8^2 + x^2</math>}}
-
<math>\text{17}^{2}=8^{2}+x^{2}</math>
+
oder
 +
{{Abgesetzte Formel||<math>x^2 = 17^2 - 8^2\,\textrm{.}</math>}}
-
or
+
Wir erhalten also die Lösung
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>x^{2}=\text{17}^{2}-8^{2}</math>
+
x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt]
-
 
+
&= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.}
-
 
+
\end{align}</math>}}
-
We get
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& x=\sqrt{\text{17}^{2}-8^{2}}=\sqrt{289-64}=\sqrt{225} \\
+
-
& =\sqrt{9\centerdot 25}=\sqrt{3^{2}\centerdot 5^{2}}=3\centerdot 5=15. \\
+
-
\end{align}</math>
+

Aktuelle Version

Nachdem das Dreieck rechtwinklig ist, benutzen wir den Satz des Pythagoras, um die Seite x zu bestimmen.

\displaystyle 17^2 = 8^2 + x^2

oder

\displaystyle x^2 = 17^2 - 8^2\,\textrm{.}

Wir erhalten also die Lösung

\displaystyle \begin{align}

x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} \end{align}