4.1 Winkel und Kreise
Aus Online Mathematik Brückenkurs 1
(Sprache und Formulierung) |
|||
Zeile 25: | Zeile 25: | ||
*Den Abstand zwischen zwei Punkten berechnen. | *Den Abstand zwischen zwei Punkten berechnen. | ||
*Kreise zeichnen, die durch eine Gleichung definiert sind. | *Kreise zeichnen, die durch eine Gleichung definiert sind. | ||
- | *Die Begriffe Einheitskreis, Tangente, Radius, | + | *Die Begriffe Einheitskreis, Tangente, Radius, Durchmesser, Umkreis, Sehne und Kreissektor kennen. |
*Geometrische Probleme mit Kreisen lösen. | *Geometrische Probleme mit Kreisen lösen. | ||
}} | }} | ||
Zeile 37: | Zeile 37: | ||
[[Image:Gradskiva - 57°.gif||center]] | [[Image:Gradskiva - 57°.gif||center]] | ||
- | *'''Radiant.''' Eine andere Winkeleinheit ist der Radiant. Der Radiant wird oft ''rad'' geschrieben. Ein Radiant wird definiert dadurch | + | *'''Radiant.''' Eine andere Winkeleinheit ist der Radiant. Der Radiant wird oft ''rad'' geschrieben. Ein Radiant wird definiert dadurch, dass ein Kreis den Winkel <math>2\pi</math> rad hat. |
[[Image:Gradskiva - Radianer.gif||center]] | [[Image:Gradskiva - Radianer.gif||center]] | ||
- | Ein Vollwinkel besteht aus <math>360^\circ</math> oder <math>2\pi</math> rad, | + | Ein Vollwinkel besteht aus <math>360^\circ</math> oder <math>2\pi</math> rad, also ist |
{{Abgesetzte Formel||<math>\begin{align*} | {{Abgesetzte Formel||<math>\begin{align*} | ||
&1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ radians } | &1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ radians } | ||
Zeile 49: | Zeile 49: | ||
= \frac{180^\circ}{\pi}\,\mbox{.} | = \frac{180^\circ}{\pi}\,\mbox{.} | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | Mit diesem | + | Mit diesem Verhältnis kann man Winkel von den Einheiten Grad in Radiant umwandeln. |
<div class="exempel"> | <div class="exempel"> | ||
Zeile 66: | Zeile 66: | ||
</div> | </div> | ||
- | Manchmal spricht man von Winkeln, die negativ oder größer als <math>360 \, ^{\circ}</math> sind. Dies bedeutet, dass ein Punkt am Kreis durch mehrere | + | Manchmal spricht man von Winkeln, die negativ oder größer als <math>360 \, ^{\circ}</math> sind. Dies bedeutet, dass ein Punkt am Kreis durch mehrere Winkel repräsentiert werden kann. |
<center>{{:4.1 - Bild - Die Winkeln 45°, -315° und 405°}}</center> | <center>{{:4.1 - Bild - Die Winkeln 45°, -315° und 405°}}</center> | ||
Zeile 74: | Zeile 74: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li> Die | + | <li> Die Winkel <math>-55^\circ</math> und <math>665^\circ |
</math> repräsentieren denselben Punkt, nachdem | </math> repräsentieren denselben Punkt, nachdem | ||
{{Abgesetzte Formel||<math> | {{Abgesetzte Formel||<math> | ||
-55^\circ + 2 \cdot 360^\circ = 665^\circ\,\mbox{.}</math>}}</li> | -55^\circ + 2 \cdot 360^\circ = 665^\circ\,\mbox{.}</math>}}</li> | ||
- | <li> Die | + | <li> Die Winkel <math>\frac{3\pi}{7}</math> und <math> |
-\frac{11\pi}{7}</math> repräsentieren denselben Punkt, nachdem | -\frac{11\pi}{7}</math> repräsentieren denselben Punkt, nachdem | ||
{{Abgesetzte Formel||<math> | {{Abgesetzte Formel||<math> | ||
\frac{3\pi}{7} - 2\pi = -\frac{11\pi}{7}\,\mbox{.}</math>}}</li> | \frac{3\pi}{7} - 2\pi = -\frac{11\pi}{7}\,\mbox{.}</math>}}</li> | ||
- | <li> Die | + | <li> Die Winkel <math>36^\circ</math> und <math> |
216^\circ</math> repräsentieren nicht denselben Punkt, nachdem | 216^\circ</math> repräsentieren nicht denselben Punkt, nachdem | ||
{{Abgesetzte Formel||<math> | {{Abgesetzte Formel||<math> | ||
Zeile 94: | Zeile 94: | ||
== Abstand zwischen zwei Punkten == | == Abstand zwischen zwei Punkten == | ||
- | Der Satz des Pythagoras ist einer der berühmtesten Sätze der Mathematik. Der Satz des Pythagoras sagt | + | Der Satz des Pythagoras ist einer der berühmtesten Sätze der Mathematik. Der Satz des Pythagoras sagt: wenn <math>a</math> und <math>b</math> die Katheten eines rechtwinkligen Dreiecks sind und <math>c</math> die Hypotenuse, dann gilt: |
<div class="regel"> | <div class="regel"> | ||
Zeile 124: | Zeile 124: | ||
</div> | </div> | ||
- | Die Gerade zwischen den beiden Punkten ist die Hypotenuse eines Dreiecks, | + | Die Gerade zwischen den beiden Punkten ist die Hypotenuse eines Dreiecks, wobei die Katheten parallel zu den Koordinatenachsen sind. |
<center>{{:4.1 - Bild - Die Abstandsformel}}</center> | <center>{{:4.1 - Bild - Die Abstandsformel}}</center> | ||
- | Die Katheten des Dreiecks sind die Unterschiede in | + | Die Katheten des Dreiecks sind die Unterschiede in ''x''- bzw. in ''y''-Richtung der Punkte, also <math>|x-a|</math> und <math>|y-b|</math>. Durch den Satz des Pythagoras erhalten wir den Abstand zwischen den Punkten. |
<div class="exempel"> | <div class="exempel"> | ||
Zeile 153: | Zeile 153: | ||
== Kreise == | == Kreise == | ||
- | Ein Kreis besteht aus allen Punkten, die auf dem Abstand <math>r</math> von einem Punkt <math>(a,b)</math> liegen. | + | Ein Kreis besteht aus allen Punkten, die auf dem Abstand <math>r</math> von einem Punkt bestimmten <math>(a,b)</math> liegen. |
<center>{{:4.1 - Bild - Kreis}}</center> | <center>{{:4.1 - Bild - Kreis}}</center> | ||
- | Der Abstand <math>r</math> ist der Radius des Kreises | + | Der Abstand <math>r</math> ist der Radius des Kreises und der Punkt <math>(a,b)</math> dessen Mittelpunkt. Das Bild zeigt andere wichtige Begriffe eines Kreises. |
{| align="center" | {| align="center" | ||
Zeile 213: | Zeile 213: | ||
|} | |} | ||
<ol style="list-style-type:none; padding-top:0; margin-top:0;"> | <ol style="list-style-type:none; padding-top:0; margin-top:0;"> | ||
- | <li>Laut Definition des Radianten ist die Länge des Kreisbogens der Winkel in Radianten multipliziert mit dem Radius | + | <li>Laut Definition des Radianten ist die Länge des Kreisbogens der Winkel in Radianten multipliziert mit dem Radius |
{{Abgesetzte Formel||<math> | {{Abgesetzte Formel||<math> | ||
- | 3 \cdot \frac{5\pi}{18}\ \mbox{ | + | 3 \cdot \frac{5\pi}{18}\ \mbox{ Einheiten } |
= \frac{5\pi}{6}\ \mbox{ Einheiten . }</math>}}</li> | = \frac{5\pi}{6}\ \mbox{ Einheiten . }</math>}}</li> | ||
</ol> | </ol> | ||
Zeile 252: | Zeile 252: | ||
|width="100%"| | |width="100%"| | ||
<ol type="a" start=2> | <ol type="a" start=2> | ||
- | <li><math>x^2 + (y-1)^2 = 1\quad</math> | + | <li><math>x^2 + (y-1)^2 = 1\quad</math>: Es gilt <math>(x-0)^2 + (y-1)^2 = 1</math>, also ist dies die Gleichung eines Kreises mit dem Mittelpunkt <math>(0,1)</math> und dem Radius <math>\sqrt{1} = 1</math>.</li> |
</ol> | </ol> | ||
|align="right"|{{:4.1 - Bild - Die Gleichung x² + (y - 1)² = 1}} | |align="right"|{{:4.1 - Bild - Die Gleichung x² + (y - 1)² = 1}} | ||
Zeile 258: | Zeile 258: | ||
|width="100%"| | |width="100%"| | ||
<ol type="a" start=3> | <ol type="a" start=3> | ||
- | <li><math>(x+1)^2 + (y-3)^2 = 5\quad</math> ist <math>(x-(-1))^2 + (y-3)^2 = 5</math> | + | <li><math>(x+1)^2 + (y-3)^2 = 5\quad</math>: es ist <math>(x-(-1))^2 + (y-3)^2 = 5</math>, also ist dies Gleichung eines Kreises mit dem Mittelpunkt <math>(-1,3)</math> und dem Radius <math>\sqrt{5} \approx 2\textrm{.}236</math>.</li> |
</ol> | </ol> | ||
|align="right"|{{:4.1 - Bild - Die Gleichung (x + 1)² + (y - 3)² = 5}} | |align="right"|{{:4.1 - Bild - Die Gleichung (x + 1)² + (y - 3)² = 5}} | ||
Zeile 271: | Zeile 271: | ||
<br> | <br> | ||
<br> | <br> | ||
- | Wir kontrollieren, ob <math>x=1</math> und <math>y=2</math> die Gleichung des Kreises erfüllen | + | Wir kontrollieren, ob <math>x=1</math> und <math>y=2</math> die Gleichung des Kreises erfüllen: |
{{Abgesetzte Formel||<math>\begin{align*} | {{Abgesetzte Formel||<math>\begin{align*} | ||
\mbox{linke Seite } &= (1-4)^2+2^2\\ | \mbox{linke Seite } &= (1-4)^2+2^2\\ | ||
Zeile 284: | Zeile 284: | ||
Nachdem der Punkt <math>(1,0)</math> auf dem Kreis liegt, muss der Abstand zwischen diesem Punkt und dem Mittelpunkt <math>(3,4)</math> der Radius des Kreises sein. Also haben wir | Nachdem der Punkt <math>(1,0)</math> auf dem Kreis liegt, muss der Abstand zwischen diesem Punkt und dem Mittelpunkt <math>(3,4)</math> der Radius des Kreises sein. Also haben wir | ||
{{Abgesetzte Formel||<math> | {{Abgesetzte Formel||<math> | ||
- | c = \sqrt{(3-1)^2 + (4-0)^2} = \sqrt{4 +16} = \sqrt{20} \, \mbox{ | + | c = \sqrt{(3-1)^2 + (4-0)^2} = \sqrt{4 +16} = \sqrt{20} \, \mbox{}</math>}} |
- | + | und die Gleichung des Kreises lautet: | |
{{Abgesetzte Formel||<math>(x-3)^2 + (y-4)^2 = 20 \; \mbox{.}</math>}} | {{Abgesetzte Formel||<math>(x-3)^2 + (y-4)^2 = 20 \; \mbox{.}</math>}} | ||
<center>{{:4.1 - Bild - Die Gleichung (x - 3)² + (y - 4)² = 20}}</center></li> | <center>{{:4.1 - Bild - Die Gleichung (x - 3)² + (y - 4)² = 20}}</center></li> |
Version vom 14:44, 15. Jun. 2009
Theorie | Übungen |
Inhalt:
- Verschiedene Winkelmaße (Grade und Radianten)
- Das Gesetz des Pythagoras
- Die Formel für den Abstand zwischen zwei Punkten
- Die Gleichung eines Kreises
Lernziele:
Nach diesem Abschnitt sollten Sie folgendes können :
- Winkel von Graden auf Radianten umwandeln.
- Die Fläche und Länge eines Kreissektors berechnen.
- Die Begriffe Kathete und Hypotenuse kennen.
- Das Gesetz des Pythagoras kennen und beherrschen.
- Den Abstand zwischen zwei Punkten berechnen.
- Kreise zeichnen, die durch eine Gleichung definiert sind.
- Die Begriffe Einheitskreis, Tangente, Radius, Durchmesser, Umkreis, Sehne und Kreissektor kennen.
- Geometrische Probleme mit Kreisen lösen.
Winkeleinheiten
Es gibt viele verschiedene Winkeleinheiten, die in verschiedenen Bereichen verwendet werden. Die zwei häufigsten sind Grad und Radiant.
- Grad. Wenn man einen Kreis in 360 gleich große Stücke aufteilt, wird jedes Teil ein Grad genannt. Man bezeichnet die Einheit Grad mit \displaystyle {}^\circ.
- Radiant. Eine andere Winkeleinheit ist der Radiant. Der Radiant wird oft rad geschrieben. Ein Radiant wird definiert dadurch, dass ein Kreis den Winkel \displaystyle 2\pi rad hat.
Ein Vollwinkel besteht aus \displaystyle 360^\circ oder \displaystyle 2\pi rad, also ist
\displaystyle \begin{align*}
&1^\circ = \frac{1}{360} \cdot 2\pi\ \mbox{ radians } = \frac{\pi}{180}\ \mbox{ radians,}\\ &1\ \mbox{ radian } = \frac{1}{2\pi} \cdot 360^\circ = \frac{180^\circ}{\pi}\,\mbox{.} \end{align*} |
Mit diesem Verhältnis kann man Winkel von den Einheiten Grad in Radiant umwandeln.
Beispiel 1
- \displaystyle 30^\circ = 30 \cdot 1^\circ = 30 \cdot \frac{\pi}{180}\ \mbox{ rad } = \frac{\pi}{6}\ \mbox{ rad }
- \displaystyle \frac{\pi}{8}\ \mbox { radians } = \frac{\pi}{8} \cdot (1 \; \mbox{rad}\,) = \frac{\pi}{8} \cdot \frac{180^\circ}{\pi} = 22{,}5^\circ
Manchmal spricht man von Winkeln, die negativ oder größer als \displaystyle 360 \, ^{\circ} sind. Dies bedeutet, dass ein Punkt am Kreis durch mehrere Winkel repräsentiert werden kann.
Beispiel 2
- Die Winkel \displaystyle -55^\circ und \displaystyle 665^\circ
repräsentieren denselben Punkt, nachdem
\displaystyle -55^\circ + 2 \cdot 360^\circ = 665^\circ\,\mbox{.}
- Die Winkel \displaystyle \frac{3\pi}{7} und \displaystyle
-\frac{11\pi}{7} repräsentieren denselben Punkt, nachdem
\displaystyle \frac{3\pi}{7} - 2\pi = -\frac{11\pi}{7}\,\mbox{.}
- Die Winkel \displaystyle 36^\circ und \displaystyle
216^\circ repräsentieren nicht denselben Punkt, nachdem
\displaystyle 36^\circ + 180^\circ = 216^\circ\,\mbox{.}
Abstand zwischen zwei Punkten
Der Satz des Pythagoras ist einer der berühmtesten Sätze der Mathematik. Der Satz des Pythagoras sagt: wenn \displaystyle a und \displaystyle b die Katheten eines rechtwinkligen Dreiecks sind und \displaystyle c die Hypotenuse, dann gilt:
Satz des Pythagoras:
|
|
Beispiel 3
Wir erhalten c durch den Satz des Pythagoras:
und daher ist
|
|
Der Satz des Pythagoras kann verwendet werden, um den Abstand zwischen zwei Punkten zu bestimmen.
Abstand zwischen zwei Punkten:
Der Abstand \displaystyle d zwischen den Punkten \displaystyle (x,y) und \displaystyle (a,b) ist
\displaystyle d = \sqrt{(x – a)^2 + (y – b)^2}\,\mbox{.} |
Die Gerade zwischen den beiden Punkten ist die Hypotenuse eines Dreiecks, wobei die Katheten parallel zu den Koordinatenachsen sind.
Die Katheten des Dreiecks sind die Unterschiede in x- bzw. in y-Richtung der Punkte, also \displaystyle |x-a| und \displaystyle |y-b|. Durch den Satz des Pythagoras erhalten wir den Abstand zwischen den Punkten.
Beispiel 4
- Der Abstand zwischen \displaystyle (1,2) und \displaystyle (3,1) ist
\displaystyle d = \sqrt{ (1-3)^2 + (2-1)^2} = \sqrt{(-2)^2 + 1^2} = \sqrt{ 4+1} = \sqrt{5}\,\mbox{.}
- Der Abstand zwischen \displaystyle (-1,0) und \displaystyle (-2,-5) ist
\displaystyle d = \sqrt{ (-1-(-2))^2 + (0-(-5))^2} = \sqrt{1^2 + 5^2} = \sqrt{1+25} = \sqrt{26}\,\mbox{.}
Kreise
Ein Kreis besteht aus allen Punkten, die auf dem Abstand \displaystyle r von einem Punkt bestimmten \displaystyle (a,b) liegen.
Der Abstand \displaystyle r ist der Radius des Kreises und der Punkt \displaystyle (a,b) dessen Mittelpunkt. Das Bild zeigt andere wichtige Begriffe eines Kreises.
|
|
|
| |||
Durchmesser | Tangente | Sehne | Sekante | |||
|
|
|
| |||
Kreisbogen | Umfang | Sektor eines Kreises | Segment eines Kreises |
Beispiel 5
Ein Kreisbogen ist in der Figur eingezeichnet.
|
|
- Laut Definition des Radianten ist die Länge des Kreisbogens der Winkel in Radianten multipliziert mit dem Radius
\displaystyle 3 \cdot \frac{5\pi}{18}\ \mbox{ Einheiten } = \frac{5\pi}{6}\ \mbox{ Einheiten . }
- Bestimmen sie die Fläche des Kreissektors
Der Kreissektor nimmt den Anteil\displaystyle \frac{50^\circ}{360^\circ} = \frac{5}{36}
der Fläche des Kreises ein. Deshalb ist die Fläche des Kreissektors \displaystyle \frac{5}{36} von der ganzen Fläche des Kreises, welche \displaystyle \pi r^2 = \pi 3^2 = 9\pi ist. Also ist die Fläche des Kreissektors
\displaystyle \frac{5}{36} \cdot 9\pi\ \mbox{ Einheiten }= \frac{5\pi}{4}\ \mbox{ Einheiten. }
Die Punkte \displaystyle (x,y), die auf dem Kreis mit dem Mittelpunkt \displaystyle (a,b) und dem Radius \displaystyle r liegen, können durch die Formel für den Abstand zwischen zwei Punkten beschrieben werden.
Die Gleichung eines Kreises:
|
|
Beispiel 6
|
|
|
|
|
|
Beispiel 7
- Liegt der Punkt \displaystyle (1,2) auf dem Kreis \displaystyle (x-4)^2 +y^2=13?
Wir kontrollieren, ob \displaystyle x=1 und \displaystyle y=2 die Gleichung des Kreises erfüllen:\displaystyle \begin{align*} \mbox{linke Seite } &= (1-4)^2+2^2\\ &= (-3)^2+2^2 = 9+4 = 13 = \mbox{Rechte Seite}\,\mbox{.} \end{align*}
Nachdem der Punkt die Gleichung des Kreises erfüllt, liegt er auf dem Kreis.
- Bestimmen Sie die Gleichung für den Kreis, der den Mittelpunkt \displaystyle (3,4) hat und durch den Punkt \displaystyle (1,0) geht.
Nachdem der Punkt \displaystyle (1,0) auf dem Kreis liegt, muss der Abstand zwischen diesem Punkt und dem Mittelpunkt \displaystyle (3,4) der Radius des Kreises sein. Also haben wir\displaystyle c = \sqrt{(3-1)^2 + (4-0)^2} = \sqrt{4 +16} = \sqrt{20} \, \mbox{}
und die Gleichung des Kreises lautet:
\displaystyle (x-3)^2 + (y-4)^2 = 20 \; \mbox{.}
Beispiel 8
Bestimmen Sie den Mittelpunkt und Radius des Kreises mit der Gleichung \displaystyle \ x^2 + y^2 – 2x + 4y + 1 = 0.
Wir wollen die Gleichung des Kreises auf die Form
\displaystyle (x – a)^2 + (y – b)^2 = r^2 |
bringen. Dann können wir den Mittelpunkt direkt als \displaystyle (a,b) ablesen, und den Radius als \displaystyle r.
Wir benutzen zuerst die quadratische Ergänzung für alle \displaystyle x-Terme auf der linken Seite
\displaystyle
\underline{x^2-2x\vphantom{(}} + y^2+4y + 1 = \underline{(x-1)^2-1^2} + y^2+4y + 1 |
(Wir haben nur die unterstrichenen Terme manipuliert)
Jetzt benutzen wir die quadratische Ergänzung für alle \displaystyle y-Terme
\displaystyle
(x-1)^2-1^2 + \underline{y^2+4y} + 1 = (x-1)^2-1^2 + \underline{(y+2)^2-2^2} + 1\,\mbox{.} |
Die linke Seite ist also
\displaystyle (x-1)^2 + (y+2)^2-4 |
Wenn wir 4 zu beiden Seiten addieren, erhalten wir
\displaystyle (x-1)^2 + (y+2)^2 = 4 \, \mbox{.} |
Also hat der Kreis den Mittelpunkt \displaystyle (1,-2) und den Radius \displaystyle \sqrt{4}= 2.
Tipps fürs Lernen
Diagnostische Prüfung und Schlussprüfung
Nachdem Sie mit der Theorie fertig sind, sollten Sie die diagnostische Prüfung und die Schlussprüfung machen. Sie finden die links zu den Prüfungen in Ihrer "Student Lounge".
Bedenken Sie folgendes:
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references:
Learn more about Pythagoras theorem in English Wikipedia
Read more in Mathworld about the circle
Nützliche Websites
Interactive experiments: the sine and cosine on the unit circle (Flash)