Lösung 3.3:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (11:33, 12. Jun. 2009) (bearbeiten) (rückgängig)
(Sprache und Formulierung)
 
(Der Versionsvergleich bezieht 7 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Wir verwenden die Logarithmengesetze
-
<center> [[Bild:3_3_6c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Abgesetzte Formel||<math>\begin{align}
-
{{NAVCONTENT_START}}
+
\log a^b &= b\cdot\log a\,\text{und}\\[5pt]
-
<center> [[Bild:3_3_6c-2(2).gif]] </center>
+
\log (a\cdot b) &= \log a+\log b\,,
-
{{NAVCONTENT_STOP}}
+
\end{align}</math>}}
-
[[Bild:3_3_6_c.gif|center]]
+
 
 +
um den Ausdruck zu vereinfachen
 +
 
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\log_{3}\log _{2}3^{118}
 +
&= \log_{3}(118\cdot\log_{2}3)\\[5pt]
 +
&= \log_{3}118 + \log_{3}\log_{2}3\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Mit den Relationen <math>2^{\log_{2}x} = x</math> und <math>3^{\log_{3}x} = x</math> erhalten wir <math>\log_{2}</math> und <math>\log_{3}</math> als <math>\ln</math> ausgedrückt:
 +
 
 +
{{Abgesetzte Formel||<math>\log_{2}x=\frac{\ln x}{\ln 2}\quad</math> und <math>\quad\log_{3}x = \frac{\ln x}{\ln 3}\,\textrm{.}</math>}}
 +
 
 +
Die beiden Terme <math>\log_3 118</math> und <math>\log_3\log_2 3</math> können deshalb als
 +
 
 +
{{Abgesetzte Formel||<math>\log_{3}118 = \frac{\ln 118}{\ln 3}\quad</math> und <math>\quad\log_{3}\log_{2}3 = \log_{3}\frac{\ln 3}{\ln 2}\,</math>}}
 +
 
 +
geschrieben werden. Mit Hilfe des Logarithmengesetzes log (a/b) = log a – log b können wir den Ausdruck weiter vereinfachen und danach <math>\log _{3}</math> in ln umzuwandeln:
 +
 
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\log_{3}\frac{\ln 3}{\ln 2}
 +
&= \log_{3}\ln 3 - \log_{3}\ln 2\\[5pt]
 +
&= \frac{\ln\ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Zusammen erhalten wir
 +
 
 +
{{Abgesetzte Formel||<math>\log_{3}\log_{2}3^{118} = \frac{\ln 118}{\ln 3} + \frac{\ln \ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.}</math>}}
 +
 
 +
Mit den Rechner erhalten wir
 +
 
 +
{{Abgesetzte Formel||<math>\log_{3}\log_{2}3^{118}\approx 4\textrm{.}762\,\textrm{.}</math>}}
 +
 
 +
 
 +
Hinweis: auf dem Rechner schreiben wir
 +
 
 +
 
 +
<center>
 +
{|
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|1
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|1
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|8
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|÷
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|3
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|+
 +
|}
 +
|-
 +
|height="7px"|
 +
|-
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|3
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|÷
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|3
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|-
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|2
 +
|}
 +
|-
 +
|height="7px"|
 +
|-
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|÷
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|3
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|LN
 +
|}
 +
||&nbsp;&nbsp;
 +
||
 +
{| border="1" cellpadding="3" cellspacing="0"
 +
|width="30px" align="center"|=
 +
|}
 +
|}
 +
</center>

Aktuelle Version

Wir verwenden die Logarithmengesetze

\displaystyle \begin{align}

\log a^b &= b\cdot\log a\,\text{und}\\[5pt] \log (a\cdot b) &= \log a+\log b\,, \end{align}

um den Ausdruck zu vereinfachen

\displaystyle \begin{align}

\log_{3}\log _{2}3^{118} &= \log_{3}(118\cdot\log_{2}3)\\[5pt] &= \log_{3}118 + \log_{3}\log_{2}3\,\textrm{.} \end{align}

Mit den Relationen \displaystyle 2^{\log_{2}x} = x und \displaystyle 3^{\log_{3}x} = x erhalten wir \displaystyle \log_{2} und \displaystyle \log_{3} als \displaystyle \ln ausgedrückt:

\displaystyle \log_{2}x=\frac{\ln x}{\ln 2}\quad und \displaystyle \quad\log_{3}x = \frac{\ln x}{\ln 3}\,\textrm{.}

Die beiden Terme \displaystyle \log_3 118 und \displaystyle \log_3\log_2 3 können deshalb als

\displaystyle \log_{3}118 = \frac{\ln 118}{\ln 3}\quad und \displaystyle \quad\log_{3}\log_{2}3 = \log_{3}\frac{\ln 3}{\ln 2}\,

geschrieben werden. Mit Hilfe des Logarithmengesetzes log (a/b) = log a – log b können wir den Ausdruck weiter vereinfachen und danach \displaystyle \log _{3} in ln umzuwandeln:

\displaystyle \begin{align}

\log_{3}\frac{\ln 3}{\ln 2} &= \log_{3}\ln 3 - \log_{3}\ln 2\\[5pt] &= \frac{\ln\ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.} \end{align}

Zusammen erhalten wir

\displaystyle \log_{3}\log_{2}3^{118} = \frac{\ln 118}{\ln 3} + \frac{\ln \ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.}

Mit den Rechner erhalten wir

\displaystyle \log_{3}\log_{2}3^{118}\approx 4\textrm{.}762\,\textrm{.}


Hinweis: auf dem Rechner schreiben wir


1
  
1
  
8
  
LN
  
÷
  
3
  
LN
  
+
3
  
LN
  
LN
  
÷
  
3
  
LN
  
-
  
2
LN
  
LN
  
÷
  
3
  
LN
  
=