Lösung 3.3:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (10:59, 12. Jun. 2009) (bearbeiten) (rückgängig)
(Sprache und Formulierung)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
All three arguments of the logarithm can be written as powers of
+
Alle Argumente können wie Potenzen zur Basis 3 geschrieben werden:
-
<math>\text{3}</math>,
+
-
<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
-
& 27^{\frac{1}{3}}=\left( 3^{3} \right)^{\frac{1}{3}}=3^{3\centerdot \frac{1}{3}}=3^{1}=3, \\
+
27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,\text{und}\\[5pt]
-
& \frac{1}{9}=\frac{1}{3^{2}}=3^{-2} \\
+
\frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,.\\
-
\end{align}</math>
+
\end{align}</math>}}
 +
Wir vereinfachen den Ausdruck mit Hilfe des Logarithmengesetzes
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
\lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9}
 +
&= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt]
 +
&= \lg 3 + \frac{1}{2}\lg 3 + (-2)\cdot\lg 3\\[5pt]
 +
&= \Bigl(1+\frac{1}{2}-2\Bigr)\lg 3\\[5pt]
 +
&= -\frac{1}{2}\lg 3\,\textrm{.}
 +
\end{align}</math>}}
-
and it is therefore appropriate to use base
+
Dieser Ausdruck kann nicht weiter vereinfacht werden.
-
<math>\text{3}</math>
+
-
when simplifying using the logarithms, even if we have the base
+
-
<math>\text{1}0</math>
+
-
logarithm, lg,
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \lg 27^{\frac{1}{3}}+\frac{\lg 3}{2}+\lg \frac{1}{9}=\lg 3+\frac{1}{2}\lg 3+\lg 3^{-2} \\
+
-
& =\lg 3+\frac{1}{2}\lg 3+\left( -2 \right)\centerdot \lg 3 \\
+
-
& =\left( 1+\frac{1}{2}-2 \right)\lg 3=-\frac{1}{2}\lg 3 \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
This expression cannot be simplified any further.
+

Aktuelle Version

Alle Argumente können wie Potenzen zur Basis 3 geschrieben werden:

\displaystyle \begin{align}

27^{\frac{1}{3}} &= \bigl(3^3\bigr)^{\frac{1}{3}} = 3^{3\cdot\frac{1}{3}} = 3^1 = 3\,\text{und}\\[5pt] \frac{1}{9} &= \frac{1}{3^2} = 3^{-2}\,.\\ \end{align}

Wir vereinfachen den Ausdruck mit Hilfe des Logarithmengesetzes

\displaystyle \begin{align}

\lg 27^{\frac{1}{3}} + \frac{\lg 3}{2} + \lg \frac{1}{9} &= \lg 3 + \frac{1}{2}\lg 3 + \lg 3^{-2}\\[5pt] &= \lg 3 + \frac{1}{2}\lg 3 + (-2)\cdot\lg 3\\[5pt] &= \Bigl(1+\frac{1}{2}-2\Bigr)\lg 3\\[5pt] &= -\frac{1}{2}\lg 3\,\textrm{.} \end{align}

Dieser Ausdruck kann nicht weiter vereinfacht werden.