Lösung 3.3:2h
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (hat „Solution 3.3:2h“ nach „Lösung 3.3:2h“ verschoben: Robot: moved page) |
K |
||
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Das Argument der Logarithmusgleichung ist <math>\frac{1}{10^{2}} = 10^{-2}</math>. Das Logarithmengesetz <math>\lg a^b = b\lg a</math> ergibt | |
{{Abgesetzte Formel||<math>\lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.}</math>}} | {{Abgesetzte Formel||<math>\lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.}</math>}} |
Aktuelle Version
Das Argument der Logarithmusgleichung ist \displaystyle \frac{1}{10^{2}} = 10^{-2}. Das Logarithmengesetz \displaystyle \lg a^b = b\lg a ergibt
\displaystyle \lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.} |