Lösung 3.1:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K
Zeile 3: Zeile 3:
{{Abgesetzte Formel||<math>\sqrt{\frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\bigr) = \sqrt{\frac{2}{3}}\cdot\sqrt{6} - \sqrt{\frac{2}{3}}\cdot\sqrt{3} = \sqrt{\frac{2\cdot 6}{3}} - \sqrt{\frac{2\cdot 3}{3}}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\sqrt{\frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\bigr) = \sqrt{\frac{2}{3}}\cdot\sqrt{6} - \sqrt{\frac{2}{3}}\cdot\sqrt{3} = \sqrt{\frac{2\cdot 6}{3}} - \sqrt{\frac{2\cdot 3}{3}}\,\textrm{.}</math>}}
-
Nachdem <math>(2\cdot 6)/3 = 2\cdot 2 = 2^2</math> und <math>(2\cdot 3)/3 = 2</math> erhalten wir
+
Da <math>(2\cdot 6)/3 = 2\cdot 2 = 2^2</math> und <math>(2\cdot 3)/3 = 2</math>, erhalten wir
{{Abgesetzte Formel||<math>\sqrt{\frac{2}{3}}\bigl(\sqrt{6} - \sqrt{3}\bigr) = \sqrt{2^2}-\sqrt{2} = 2-\sqrt{2}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>\sqrt{\frac{2}{3}}\bigl(\sqrt{6} - \sqrt{3}\bigr) = \sqrt{2^2}-\sqrt{2} = 2-\sqrt{2}\,\textrm{.}</math>}}

Version vom 09:44, 10. Jun. 2009

Wir multiplizieren beide Terme mit \displaystyle \sqrt{\tfrac{2}{3}} und benutzen die Regel \displaystyle \sqrt{a\vphantom{b}}\cdot \sqrt{b} = \sqrt{ab}, um den Ausdruck zu vereinfachen:

\displaystyle \sqrt{\frac{2}{3}}\bigl(\sqrt{6}-\sqrt{3}\bigr) = \sqrt{\frac{2}{3}}\cdot\sqrt{6} - \sqrt{\frac{2}{3}}\cdot\sqrt{3} = \sqrt{\frac{2\cdot 6}{3}} - \sqrt{\frac{2\cdot 3}{3}}\,\textrm{.}

Da \displaystyle (2\cdot 6)/3 = 2\cdot 2 = 2^2 und \displaystyle (2\cdot 3)/3 = 2, erhalten wir

\displaystyle \sqrt{\frac{2}{3}}\bigl(\sqrt{6} - \sqrt{3}\bigr) = \sqrt{2^2}-\sqrt{2} = 2-\sqrt{2}\,\textrm{.}