Lösung 3.1:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (09:33, 10. Jun. 2009) (bearbeiten) (rückgängig)
(Sprache und Formulierung)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
That which is under the root sign is the same as
+
Der Ausdruck in der Wurzel ist <math>(-3)^{2} = 9</math>. Da
-
<math>\left( -\text{3} \right)^{\text{2}}=\text{9 }</math>
+
<math>9 = 3\cdot 3 = 3^{2}</math>, haben wir
-
and because
+
-
<math>\text{9}=\text{3}\centerdot \text{3}=\text{3}^{\text{2}}</math>, hence
+
 +
{{Abgesetzte Formel||<math>\sqrt{(-3)^{2}} = \sqrt{9} = 9^{1/2} = \bigl(3^{2}\bigr)^{1/2} = 3^{2\cdot\frac{1}{2}} = 3^{1} = 3</math>.}}
-
<math>\sqrt{\left( -3 \right)^{2}}=\sqrt{9}=9^{{1}/{2}\;}=\left( 3^{2} \right)^{{1}/{2}\;}=3^{2\centerdot \frac{1}{2}}=3^{1}=3</math>
 
-
 
+
Hinweis:
-
NOTE:
+
Die Rechnung <math>\sqrt{(-3)^{2}} = \bigl((-3)^{2}\bigr)^{1/2} = (-3)^{2\cdot \frac{1}{2}} = (-3)^1 = -3</math> ist falsch aufgrund der zweiten Gleichung, weil die Rechenregeln für Potenzen nur für positive Basen gelten.
-
The calculation
+
-
<math>\sqrt{\left( -3 \right)^{2}}=\left( \left( -3 \right)^{2} \right)^{{1}/{2}\;}=\left( -3 \right)^{2\centerdot \frac{1}{2}}=\left( -3 \right)^{1}=-3</math>
+
-
 
+
-
is wrong at the second equals sign. Remember that the power rules apply when the base is positive.
+

Aktuelle Version

Der Ausdruck in der Wurzel ist \displaystyle (-3)^{2} = 9. Da \displaystyle 9 = 3\cdot 3 = 3^{2}, haben wir

\displaystyle \sqrt{(-3)^{2}} = \sqrt{9} = 9^{1/2} = \bigl(3^{2}\bigr)^{1/2} = 3^{2\cdot\frac{1}{2}} = 3^{1} = 3.


Hinweis: Die Rechnung \displaystyle \sqrt{(-3)^{2}} = \bigl((-3)^{2}\bigr)^{1/2} = (-3)^{2\cdot \frac{1}{2}} = (-3)^1 = -3 ist falsch aufgrund der zweiten Gleichung, weil die Rechenregeln für Potenzen nur für positive Basen gelten.