Lösung 2.3:7c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K |
||
(Der Versionsvergleich bezieht 2 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Wir ergänzen den quadratischen Ausdruck: | |
- | {{Abgesetzte Formel||<math>x^{2}+x+1=\Bigl(x+\frac{1}{2}\Bigr)^{2}-\Bigl(\frac{1}{2} \Bigr)^{2}+1 = \Bigl(x+\frac{1}{2}\Bigr)^{2} + \frac{3}{4}\, | + | {{Abgesetzte Formel||<math>x^{2}+x+1=\Bigl(x+\frac{1}{2}\Bigr)^{2}-\Bigl(\frac{1}{2} \Bigr)^{2}+1 = \Bigl(x+\frac{1}{2}\Bigr)^{2} + \frac{3}{4}\,.</math>}} |
- | + | Wir sehen, dass der Ausdruck beliebig groß werden kann, indem man <math>x+\tfrac{1}{2}</math> beliebig groß wählt. Also hat der Ausdruck keinen größten Wert. |
Aktuelle Version
Wir ergänzen den quadratischen Ausdruck:
\displaystyle x^{2}+x+1=\Bigl(x+\frac{1}{2}\Bigr)^{2}-\Bigl(\frac{1}{2} \Bigr)^{2}+1 = \Bigl(x+\frac{1}{2}\Bigr)^{2} + \frac{3}{4}\,. |
Wir sehen, dass der Ausdruck beliebig groß werden kann, indem man \displaystyle x+\tfrac{1}{2} beliebig groß wählt. Also hat der Ausdruck keinen größten Wert.