Lösung 2.3:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:27, 9. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We apply the standard formula for completing the square,
+
Wir verwenden die Formel für quadratische Ergänzung
 +
{{Abgesetzte Formel||<math>x^{2}+ax = \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{,}</math>}}
-
<math>x^{2}+ax=\left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math>
+
Wir haben
-
on our expression and this gives
+
{{Abgesetzte Formel||<math>x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.}</math>}}
 +
Unser Ausdruck wird dadurch
-
<math>x^{2}+5x=\left( x+\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}</math>
+
{{Abgesetzte Formel||<math>\begin{align}
 +
x^{2}+5x+3
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{12}{4}\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} + \frac{12-25}{4}\\[5pt]
 +
&= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\,\textrm{.}
 +
\end{align}</math>}}
-
The whole expression becomes
+
Schließlich kontrollieren wir unsere Rechnungen
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>\begin{align}
+
\Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}
-
& x^{2}+5x+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{12}{4} \\
+
&= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt]
-
& =\left( x+\frac{5}{2} \right)^{2}+\frac{12-25}{4}=\left( x+\frac{5}{2} \right)^{2}-\frac{13}{4} \\
+
&= x^{2} + 5x + \frac{25}{4} - \frac{13}{4}\\[5pt]
-
\end{align}</math>
+
&= x^{2} + 5x + \frac{12}{4}\\[5pt]
-
 
+
&= x^{2}+5x+3\,\textrm{.}
-
 
+
\end{align}</math>}}
-
A quick check shows that we have calculated correctly.
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \left( x+\frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+2\centerdot \frac{5}{2}\centerdot x+\left( \frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+5x+\frac{25}{4}-\frac{13}{4} \\
+
-
& =x^{2}+5x+\frac{12}{4}=x^{2}+5x+3 \\
+
-
\end{align}</math>
+

Aktuelle Version

Wir verwenden die Formel für quadratische Ergänzung

\displaystyle x^{2}+ax = \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{,}

Wir haben

\displaystyle x^{2}+5x = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} = \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}\,\textrm{.}

Unser Ausdruck wird dadurch

\displaystyle \begin{align}

x^{2}+5x+3 &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4}+3\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{12}{4}\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} + \frac{12-25}{4}\\[5pt] &= \Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\,\textrm{.} \end{align}

Schließlich kontrollieren wir unsere Rechnungen

\displaystyle \begin{align}

\Bigl(x+\frac{5}{2}\Bigr)^{2} - \frac{13}{4} &= x^{2} + 2\cdot\frac{5}{2}\cdot x + \Bigl(\frac{5}{2}\Bigr)^{2} - \frac{13}{4}\\[5pt] &= x^{2} + 5x + \frac{25}{4} - \frac{13}{4}\\[5pt] &= x^{2} + 5x + \frac{12}{4}\\[5pt] &= x^{2}+5x+3\,\textrm{.} \end{align}