Lösung 2.3:1c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:26, 9. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
As always when completing the square, we focus on the quadratic and linear terms
+
Wir beachten wie immer nur das quadratische und lineare Glied.
-
<math>2x-x^{2}</math>
+
<math>2x-x^{2}</math> kann auch wie <math>-(x^{2}-2x)</math> geschrieben werden. Wir beachten zuerst nicht das -, sondern ergänzen den Ausdruck <math>2x-x^{2}</math> mit der Formel
-
, which we also can write as
+
-
<math>-\left( x^{2}-2x \right)</math>
+
-
. If we neglect the minus sign, we can complete square of the expression
+
-
<math>2x-x^{2}</math>
+
-
by using the formula
+
 +
{{Abgesetzte Formel||<math>x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}</math>}}
-
<math>x^{2}-ax=\left( x-\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math>
+
und erhalten so
 +
{{Abgesetzte Formel||<math>x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.}</math>}}
-
and we obtain
+
Dies bedeutet, dass
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt]
 +
&= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.}
 +
\end{align}</math>}}
-
<math>x^{2}-2x=\left( x-\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x-1 \right)^{2}-1</math>
+
Wir kontrollieren schließlich unsere Antwort
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
This means that
+
6-(x-1)^{2}
-
 
+
&= 6-(x^{2}-2x+1)\\[5pt]
-
 
+
&= 6-x^{2}+2x-1\\[5pt]
-
<math>\begin{align}
+
& =5+2x-x^{2}\textrm{.}
-
& 5+2x-x^{2}=5-\left( x^{2}-2x \right)=5-\left( \left( x-1 \right)^{2}-1 \right) \\
+
\end{align}</math>}}
-
& \\
+
-
& =5-\left( x-1 \right)^{2}+1=6-\left( x-1 \right)^{2} \\
+
-
& \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
A quick check shows that we have completed the square correctly.:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& 6-\left( x-1 \right)^{2}=6-\left( x^{2}-2x+1 \right)=6-x^{2}+2x-1 \\
+
-
& \\
+
-
& =5+2x-x^{2} \\
+
-
& \\
+
-
\end{align}</math>
+

Aktuelle Version

Wir beachten wie immer nur das quadratische und lineare Glied. \displaystyle 2x-x^{2} kann auch wie \displaystyle -(x^{2}-2x) geschrieben werden. Wir beachten zuerst nicht das -, sondern ergänzen den Ausdruck \displaystyle 2x-x^{2} mit der Formel

\displaystyle x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}

und erhalten so

\displaystyle x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.}

Dies bedeutet, dass

\displaystyle \begin{align}

5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt] &= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.} \end{align}

Wir kontrollieren schließlich unsere Antwort

\displaystyle \begin{align}

6-(x-1)^{2} &= 6-(x^{2}-2x+1)\\[5pt] &= 6-x^{2}+2x-1\\[5pt] & =5+2x-x^{2}\textrm{.} \end{align}