Lösung 2.3:1b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
K |
||
(Der Versionsvergleich bezieht 7 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Bei der quadratischen Ergänzung beachten wir nur den quadratischen und den linearen Term, also <math>x^{2}+2x</math>. Die Formel für die quadratische Ergänzung von <math>x^{2}+ax</math> lautet |
- | < | + | |
- | {{ | + | {{Abgesetzte Formel||<math>\Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{.}</math>}} |
+ | |||
+ | Verwenden wir diese Formel, erhalten wir | ||
+ | |||
+ | {{Abgesetzte Formel||<math>x^{2}+2x = \Bigl(x+\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x+1)^{2}-1</math>}} | ||
+ | |||
+ | Subtrahieren wir "-1" von beiden Seiten der Gleichung, erhalten wir | ||
+ | |||
+ | {{Abgesetzte Formel||<math>x^{2}+2x-1 = (x+1)^{2}-1-1 = (x+1)^{2}-2\,\textrm{.}</math>}} | ||
+ | |||
+ | Um zu kontrollieren, ob die quadratische Ergänzung korrekt ist, erweitern wir die Quadrate auf der Rechten Seite, und erhalten | ||
+ | |||
+ | {{Abgesetzte Formel||<math>(x+1)^{2}-2 = x^{2}+2x+1-2 = x^{2}+2x-1</math>}} |
Aktuelle Version
Bei der quadratischen Ergänzung beachten wir nur den quadratischen und den linearen Term, also \displaystyle x^{2}+2x. Die Formel für die quadratische Ergänzung von \displaystyle x^{2}+ax lautet
\displaystyle \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{.} |
Verwenden wir diese Formel, erhalten wir
\displaystyle x^{2}+2x = \Bigl(x+\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x+1)^{2}-1 |
Subtrahieren wir "-1" von beiden Seiten der Gleichung, erhalten wir
\displaystyle x^{2}+2x-1 = (x+1)^{2}-1-1 = (x+1)^{2}-2\,\textrm{.} |
Um zu kontrollieren, ob die quadratische Ergänzung korrekt ist, erweitern wir die Quadrate auf der Rechten Seite, und erhalten
\displaystyle (x+1)^{2}-2 = x^{2}+2x+1-2 = x^{2}+2x-1 |