Lösung 2.1:8c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (08:24, 9. Jun. 2009) (bearbeiten) (rückgängig)
K
 
Zeile 1: Zeile 1:
-
Hier ist es gut den Bruch Schritt für Schritt zu vereinfachen. Als erster Schritt erweitern wir den Bruch
+
Hier ist es gut, den Bruch Schritt für Schritt zu vereinfachen. Als erster Schritt erweitern wir den Bruch
{{Abgesetzte Formel||<math>\frac{1}{1+\dfrac{1}{1+x}}</math>}}
{{Abgesetzte Formel||<math>\frac{1}{1+\dfrac{1}{1+x}}</math>}}
Zeile 14: Zeile 14:
\end{align}</math>}}
\end{align}</math>}}
-
Jetzt erweiten wir den Hauptbruch mit dem Faktor <math>x+2</math>, und erhalten
+
Jetzt erweitern wir den Hauptbruch mit dem Faktor <math>x+2</math>, und erhalten
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}

Aktuelle Version

Hier ist es gut, den Bruch Schritt für Schritt zu vereinfachen. Als erster Schritt erweitern wir den Bruch

\displaystyle \frac{1}{1+\dfrac{1}{1+x}}

mit dem Faktor \displaystyle 1+x, sodass der Ausdruck nur einen Bruch enthält

\displaystyle \begin{align}

\frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}} &= \frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}\cdot\dfrac{1+x}{1+x}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{\Bigl(1+\dfrac{1}{1+x}\Bigr)(1+x)}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{1+x+\dfrac{1+x}{1+x}}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{1+x+1}}\\[8pt] &= \frac{1}{1+\dfrac{x+1}{x+2}}\,\textrm{.} \end{align}

Jetzt erweitern wir den Hauptbruch mit dem Faktor \displaystyle x+2, und erhalten

\displaystyle \begin{align}

\frac{1}{1+\dfrac{x+1}{x+2}}\cdot\frac{x+2}{x+2} &= \frac{x+2}{\Bigl(1+\dfrac{x+1}{x+2}\Bigr)(x+2)}\\[8pt] &= \frac{x+2}{x+2+\dfrac{x+1}{x+2}(x+2)}\\[8pt] &= \frac{x+2}{x+2+x+1}\\[8pt] &= \frac{x+2}{2x+3}\,\textrm{.} \end{align}