Lösung 2.1:8c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (08:24, 9. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
When we come across large and complicated expressions, we have to work step by step;
+
Hier ist es gut, den Bruch Schritt für Schritt zu vereinfachen. Als erster Schritt erweitern wir den Bruch
-
as a first goal, we can multiply the top and bottom of the fraction
+
{{Abgesetzte Formel||<math>\frac{1}{1+\dfrac{1}{1+x}}</math>}}
 +
mit dem Faktor <math>1+x</math>, sodass der Ausdruck nur einen Bruch enthält
-
<math>\frac{1}{1+\frac{1}{1+x}}</math>
+
{{Abgesetzte Formel||<math>\begin{align}
 +
\frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}}
 +
&= \frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}\cdot\dfrac{1+x}{1+x}}\\[8pt]
 +
&= \frac{1}{1+\dfrac{1+x}{\Bigl(1+\dfrac{1}{1+x}\Bigr)(1+x)}}\\[8pt]
 +
&= \frac{1}{1+\dfrac{1+x}{1+x+\dfrac{1+x}{1+x}}}\\[8pt]
 +
&= \frac{1}{1+\dfrac{1+x}{1+x+1}}\\[8pt]
 +
&= \frac{1}{1+\dfrac{x+1}{x+2}}\,\textrm{.}
 +
\end{align}</math>}}
 +
Jetzt erweitern wir den Hauptbruch mit dem Faktor <math>x+2</math>, und erhalten
-
by
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>1+x</math>, so as to reduce it to an expression having one fraction sign:
+
\frac{1}{1+\dfrac{x+1}{x+2}}\cdot\frac{x+2}{x+2}
-
 
+
&= \frac{x+2}{\Bigl(1+\dfrac{x+1}{x+2}\Bigr)(x+2)}\\[8pt]
-
 
+
&= \frac{x+2}{x+2+\dfrac{x+1}{x+2}(x+2)}\\[8pt]
-
<math>\begin{align}
+
&= \frac{x+2}{x+2+x+1}\\[8pt]
-
& \frac{1}{1+\frac{1}{1+\frac{1}{1+x}}}=\frac{1}{1+\frac{1}{1+\frac{1}{1+x}}\centerdot \frac{1+x}{1+x}}=\frac{1}{1+\frac{1+x}{\left( 1+\frac{1}{1+x} \right)\left( 1+x \right)}} \\
+
&= \frac{x+2}{2x+3}\,\textrm{.}
-
& \\
+
\end{align}</math>}}
-
& =\frac{1}{1+\frac{1+x}{1+x+\frac{1+x}{1+x}}}=\frac{1}{1+\frac{1+x}{1+x+1}}=\frac{1}{1+\frac{x+1}{x+2}} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
The next step is to multiply the top and bottom of our new expression by
+
-
<math>x+2</math>,
+
-
so as to obtain the final answer,
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \frac{1}{1+\frac{x+1}{x+2}}\centerdot \frac{x+2}{x+2}=\frac{x+2}{\left( 1+\frac{x+1}{x+2} \right)\left( x+2 \right)}=\frac{x+2}{x+2+\frac{x+1}{x+2}\left( x+2 \right)} \\
+
-
& \\
+
-
& \frac{x+2}{x+2+x+1}=\frac{x+2}{2x+3} \\
+
-
& \\
+
-
\end{align}</math>
+

Aktuelle Version

Hier ist es gut, den Bruch Schritt für Schritt zu vereinfachen. Als erster Schritt erweitern wir den Bruch

\displaystyle \frac{1}{1+\dfrac{1}{1+x}}

mit dem Faktor \displaystyle 1+x, sodass der Ausdruck nur einen Bruch enthält

\displaystyle \begin{align}

\frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}} &= \frac{1}{1+\dfrac{1}{1+\dfrac{1}{1+x}}\cdot\dfrac{1+x}{1+x}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{\Bigl(1+\dfrac{1}{1+x}\Bigr)(1+x)}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{1+x+\dfrac{1+x}{1+x}}}\\[8pt] &= \frac{1}{1+\dfrac{1+x}{1+x+1}}\\[8pt] &= \frac{1}{1+\dfrac{x+1}{x+2}}\,\textrm{.} \end{align}

Jetzt erweitern wir den Hauptbruch mit dem Faktor \displaystyle x+2, und erhalten

\displaystyle \begin{align}

\frac{1}{1+\dfrac{x+1}{x+2}}\cdot\frac{x+2}{x+2} &= \frac{x+2}{\Bigl(1+\dfrac{x+1}{x+2}\Bigr)(x+2)}\\[8pt] &= \frac{x+2}{x+2+\dfrac{x+1}{x+2}(x+2)}\\[8pt] &= \frac{x+2}{x+2+x+1}\\[8pt] &= \frac{x+2}{2x+3}\,\textrm{.} \end{align}