Lösung 2.1:2c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K |
||
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Wir verwenden die binomische Formel <math>(a+b)^2=a^2+2ab+b^2,</math> für die erste Klammer und erweitern den zweiten Term | |
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(3x+4)^2&-(3x-2)(3x-8)\\ | (3x+4)^2&-(3x-2)(3x-8)\\ | ||
&=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\ | &=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\ |
Aktuelle Version
Wir verwenden die binomische Formel \displaystyle (a+b)^2=a^2+2ab+b^2, für die erste Klammer und erweitern den zweiten Term
\displaystyle \begin{align}
(3x+4)^2&-(3x-2)(3x-8)\\ &=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\ &= (9x^2+24x+16)-(9x^2-24x-6x+16)\\ &=(9x^2+24x+16)-(9x^2-30x+16)\\ &=(9x^2+24x+16)-9x^2+30x-16\\ &=9x^2-9x^2+24x+30x+16-16\\ &=0+54x+0\\ &= 54x\,\textrm{.} \end{align} |