Lösung 2.1:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Sprache und Formulierung) |
|||
Zeile 1: | Zeile 1: | ||
- | Nachdem <math> x^3y^2 </math> mit der Klammer multipliziert wird, kürzen wir den Bruch sodass alle Faktoren die in Zähler und Nenner vorkommen verschwinden | + | Nachdem <math> x^3y^2 </math> mit der Klammer multipliziert wird, kürzen wir den Bruch sodass alle Faktoren die in Zähler und Nenner vorkommen verschwinden: |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
x^3y^2\Big( \frac{1}{y} - \frac{1}{xy} +1 \Big) &= x^3y^2 \cdot\frac{1}{y} -x^3y^2 \cdot \frac{1}{xy} +x^3y^2\cdot 1 \\ | x^3y^2\Big( \frac{1}{y} - \frac{1}{xy} +1 \Big) &= x^3y^2 \cdot\frac{1}{y} -x^3y^2 \cdot \frac{1}{xy} +x^3y^2\cdot 1 \\ | ||
&=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\ | &=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\ | ||
- | &=x^3y - x^2y +x^3y^2\, | + | &=x^3y - x^2y +x^3y^2\,. |
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Wir folgende Rechnungen verwendet: | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
\frac{x^3y^2}{y} &= \frac{x^3\cdot y\cdot{}\rlap{/}y}{\rlap{/}y}= x^3y\,,\\[5pt] | \frac{x^3y^2}{y} &= \frac{x^3\cdot y\cdot{}\rlap{/}y}{\rlap{/}y}= x^3y\,,\\[5pt] | ||
\frac{x^3y^2}{xy} &= \frac{\rlap{/}x\cdot x\cdot x \cdot y \cdot {}\rlap{/}y}{\rlap{/}x\cdot {}\rlap{/}y} = x\cdot x\cdot y = x^2y\,\textrm{.}\end{align}</math>}} | \frac{x^3y^2}{xy} &= \frac{\rlap{/}x\cdot x\cdot x \cdot y \cdot {}\rlap{/}y}{\rlap{/}x\cdot {}\rlap{/}y} = x\cdot x\cdot y = x^2y\,\textrm{.}\end{align}</math>}} |
Version vom 14:54, 8. Jun. 2009
Nachdem \displaystyle x^3y^2 mit der Klammer multipliziert wird, kürzen wir den Bruch sodass alle Faktoren die in Zähler und Nenner vorkommen verschwinden:
\displaystyle \begin{align}
x^3y^2\Big( \frac{1}{y} - \frac{1}{xy} +1 \Big) &= x^3y^2 \cdot\frac{1}{y} -x^3y^2 \cdot \frac{1}{xy} +x^3y^2\cdot 1 \\ &=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\ &=x^3y - x^2y +x^3y^2\,. \end{align} |
Wir folgende Rechnungen verwendet:
\displaystyle \begin{align}
\frac{x^3y^2}{y} &= \frac{x^3\cdot y\cdot{}\rlap{/}y}{\rlap{/}y}= x^3y\,,\\[5pt] \frac{x^3y^2}{xy} &= \frac{\rlap{/}x\cdot x\cdot x \cdot y \cdot {}\rlap{/}y}{\rlap{/}x\cdot {}\rlap{/}y} = x\cdot x\cdot y = x^2y\,\textrm{.}\end{align} |