Lösung 1.3:6d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:22, 8. Jun. 2009) (bearbeiten) (rückgängig)
(Sprache und Formulierung)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
One way to compare the two numbers is to rewrite the power
+
Wir verwenden die Rechenregeln mit dem Ziel, dass die Potenz <math>\bigl(5^{\frac{1}{3}}\bigr)^{4}</math> dieselbe Basis wie <math>400^{\frac{1}{3}}</math> hat
-
<math>\left( 5^{\frac{1}{3}} \right)^{4}</math>
+
-
so that it has the same exponent as
+
-
<math>400^{\frac{1}{3}}</math>,
+
 +
{{Abgesetzte Formel||<math>\bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,</math>.}}
-
<math>\left( 5^{\frac{1}{3}} \right)^{4}=5^{\frac{1}{3}\centerdot 4}=5^{4\centerdot \frac{1}{3}}=\left( 5^{4} \right)^{\frac{1}{3}}=\left( 5\centerdot 5\centerdot 5\centerdot 5 \right)^{\frac{1}{3}}=625^{\frac{1}{3}}</math>.
+
Jetzt sieht man, dass <math>\bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}</math>, nachdem <math>625 > 400</math> und der Exponent 1/3 positiv ist.
-
 
+
-
Now, we see that
+
-
<math>\left( 5^{\frac{1}{3}} \right)^{4}>400^{\frac{1}{3}}</math>, because
+
-
<math>625>400</math>
+
-
and the exponent
+
-
<math>\frac{1}{3}</math>
+
-
is positive.
+

Aktuelle Version

Wir verwenden die Rechenregeln mit dem Ziel, dass die Potenz \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} dieselbe Basis wie \displaystyle 400^{\frac{1}{3}} hat

\displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,.

Jetzt sieht man, dass \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}, nachdem \displaystyle 625 > 400 und der Exponent 1/3 positiv ist.