Lösung 1.3:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:1d moved to Solution 1.3:1d: Robot: moved page)
Aktuelle Version (13:01, 8. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Mit Hilfe der Rechenregeln für Potenzen können wir den Ausdruck umschreiben,
-
<center> [[Image:1_3_1d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Abgesetzte Formel||<math>\left( \frac{2}{3} \right)^{-3} = \frac{2^{-3}}{3^{-3}} = \frac{\,\dfrac{1}{2^{3}}\,}{\,\dfrac{1}{3^{3}}\,} = \frac{\,\dfrac{1}{2^{3}}\cdot 3^{3}\,}{\,\dfrac{1}{\rlap{\,/}3^{3}}\cdot {}\rlap{\,/}3^{3}\,} = \frac{\,\dfrac{3^{3}}{2^{3}}\,}{1} = \frac{3^{3}}{2^{3}}\,,</math>}}
 +
 
 +
und danach die Berechnungen ausführen
 +
 
 +
{{Abgesetzte Formel||<math>\frac{3^{3}}{2^{3}} = \frac{3\cdot 3\cdot 3}{2\cdot 2\cdot 2} = \frac{27}{8}\,</math>.}}

Aktuelle Version

Mit Hilfe der Rechenregeln für Potenzen können wir den Ausdruck umschreiben,

\displaystyle \left( \frac{2}{3} \right)^{-3} = \frac{2^{-3}}{3^{-3}} = \frac{\,\dfrac{1}{2^{3}}\,}{\,\dfrac{1}{3^{3}}\,} = \frac{\,\dfrac{1}{2^{3}}\cdot 3^{3}\,}{\,\dfrac{1}{\rlap{\,/}3^{3}}\cdot {}\rlap{\,/}3^{3}\,} = \frac{\,\dfrac{3^{3}}{2^{3}}\,}{1} = \frac{3^{3}}{2^{3}}\,,

und danach die Berechnungen ausführen

\displaystyle \frac{3^{3}}{2^{3}} = \frac{3\cdot 3\cdot 3}{2\cdot 2\cdot 2} = \frac{27}{8}\,.