Lösung 4.3:8d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:22, 5. Apr. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
It seems natural to try to use the addition formula on the numerator of the left-hand side:
+
Wir verwenden das Additionstheorem und erhalten direkt
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>\begin{align}
+
\frac{\cos (u+v)}{\cos u\cos v}
-
& \frac{\cos \left( u+v \right)}{\cos u\cos v}=\frac{\cos u\centerdot \cos v-\sin u\centerdot \sin v}{\cos u\centerdot \cos v} \\
+
&= \frac{\cos u\cdot\cos v - \sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt]
-
& =1-\frac{\sin u\centerdot \sin v}{\cos u\centerdot \cos v}=1-\tan u\centerdot \tan v. \\
+
&= 1-\frac{\sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt]
-
\end{align}</math>
+
&= 1-\tan u\cdot\tan v\,\textrm{.}
 +
\end{align}</math>}}

Aktuelle Version

Wir verwenden das Additionstheorem und erhalten direkt

\displaystyle \begin{align}

\frac{\cos (u+v)}{\cos u\cos v} &= \frac{\cos u\cdot\cos v - \sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt] &= 1-\frac{\sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt] &= 1-\tan u\cdot\tan v\,\textrm{.} \end{align}