Lösung 3.1:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (21:53, 25. Mär. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We use the standard method and augment the fraction with the conjugate of the denominator
+
Wir erweitern den Bruch mit <math>\sqrt{5}+2</math> und vereinfachen
-
<math>\sqrt{5}+2</math>. Then the conjugate rule gives
+
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>\begin{align}
+
\frac{\sqrt{2}+3}{\sqrt{5}-2}
-
& \frac{\sqrt{2}+3}{\sqrt{5}-2}=\frac{\sqrt{2}+3}{\sqrt{5}-2}\centerdot \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{\left( \sqrt{2}+3 \right)\left( \sqrt{5}+2 \right)}{\left( \sqrt{5} \right)^{2}-2^{2}} \\
+
&= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt]
-
& =\frac{\sqrt{2}\centerdot \sqrt{5}+\sqrt{2}\centerdot 2+3\centerdot \sqrt{5}+3\centerdot 2}{5-4}=\sqrt{2\centerdot 5}+2\sqrt{2}+3\sqrt{5}+6 \\
+
&= \frac{(\sqrt{2}+3)(\sqrt{5}+2)}{(\sqrt{5})^{2}-2^{2}}\\[5pt]
-
& =6+2\sqrt{2}+3\sqrt{5}+10 \\
+
&= \frac{\sqrt{2}\cdot\sqrt{5}+\sqrt{2}\cdot 2+3\cdot \sqrt{5}+3\cdot 2}{5-4}\\[5pt]
-
\end{align}</math>
+
&= \sqrt{2\cdot 5} + 2\sqrt{2} + 3\sqrt{5} + 6\\[5pt]
 +
&= 6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}\,\textrm{.}
 +
\end{align}</math>}}

Aktuelle Version

Wir erweitern den Bruch mit \displaystyle \sqrt{5}+2 und vereinfachen

\displaystyle \begin{align}

\frac{\sqrt{2}+3}{\sqrt{5}-2} &= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt] &= \frac{(\sqrt{2}+3)(\sqrt{5}+2)}{(\sqrt{5})^{2}-2^{2}}\\[5pt] &= \frac{\sqrt{2}\cdot\sqrt{5}+\sqrt{2}\cdot 2+3\cdot \sqrt{5}+3\cdot 2}{5-4}\\[5pt] &= \sqrt{2\cdot 5} + 2\sqrt{2} + 3\sqrt{5} + 6\\[5pt] &= 6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}\,\textrm{.} \end{align}