Lösung 2.1:7b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (10:43, 1. Mär. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The denominators
+
Der kleinste gemeinsamer Nenner von den Nennern <math>x-1</math>, <math>x^{2}</math> und <math>1</math> ist <math>x^{2}(x-1)</math>. Wir schreiben alle drei Terme mit gemeinsamen Nenner
-
<math>x-1</math>
+
-
and
+
-
<math>x^{2}</math>
+
-
do not have a common denominator, so the lowest common denominator is
+
-
<math>x^{2}\left( x-1 \right)</math>. We treat all three terms so that they have a common denominator and then start simplifying:
+
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
<math>\begin{align}
+
x + \frac{1}{x-1} + \frac{1}{x^{2}}
-
& x+\frac{1}{x-1}+\frac{1}{x^{2}}=x\centerdot \frac{x^{2}\left( x-1 \right)}{x^{2}\left( x-1 \right)}+\frac{1}{x-1}\centerdot \frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}\centerdot \frac{x-1}{x-1} \\
+
&= x\cdot\frac{x^{2}(x-1)}{x^{2}(x-1)} + \frac{1}{x-1}\cdot\frac{x^{2}}{x^{2}} + \frac{1}{x^{2}}\cdot\frac{x-1}{x-1}\\[5pt]
-
& =\frac{x^{3}\left( x-1 \right)+x^{2}+\left( x-1 \right)}{x^{2}\left( x-1 \right)}=\frac{x^{4}-x^{3}+x^{2}+x-1}{x^{2}\left( x-1 \right)} \\
+
&= \frac{x^{3}(x-1)+x^{2}+(x-1)}{x^{2}(x-1)}\\[5pt]
-
\end{align}</math>
+
&= \frac{x^{4}-x^{3}+x^{2}+x-1}{x^{2}(x-1)}\,\textrm{.}
 +
\end{align}</math>}}

Aktuelle Version

Der kleinste gemeinsamer Nenner von den Nennern \displaystyle x-1, \displaystyle x^{2} und \displaystyle 1 ist \displaystyle x^{2}(x-1). Wir schreiben alle drei Terme mit gemeinsamen Nenner

\displaystyle \begin{align}

x + \frac{1}{x-1} + \frac{1}{x^{2}} &= x\cdot\frac{x^{2}(x-1)}{x^{2}(x-1)} + \frac{1}{x-1}\cdot\frac{x^{2}}{x^{2}} + \frac{1}{x^{2}}\cdot\frac{x-1}{x-1}\\[5pt] &= \frac{x^{3}(x-1)+x^{2}+(x-1)}{x^{2}(x-1)}\\[5pt] &= \frac{x^{4}-x^{3}+x^{2}+x-1}{x^{2}(x-1)}\,\textrm{.} \end{align}