Lösung 2.1:6d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
|||
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Zuerst vereinfachen wir jeweils den Zähler und den Nenner des Hauptbruches | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 11: | Zeile 11: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | Der ganze Bruch ist also | |
{{Abgesetzte Formel||<math>\frac{a-b+\dfrac{b^{2}}{a+b}}{1-\biggl(\dfrac{a-b}{a+b}\biggr)^{2}} = \frac{\dfrac{a^{2}}{a+b}}{\dfrac{4ab}{(a+b)^{2}}} = \frac{a^{2}}{a+b}\cdot\frac{(a+b)^{2}}{4ab} = \frac{a(a+b)}{4b}\,\textrm{.}</math>}} | {{Abgesetzte Formel||<math>\frac{a-b+\dfrac{b^{2}}{a+b}}{1-\biggl(\dfrac{a-b}{a+b}\biggr)^{2}} = \frac{\dfrac{a^{2}}{a+b}}{\dfrac{4ab}{(a+b)^{2}}} = \frac{a^{2}}{a+b}\cdot\frac{(a+b)^{2}}{4ab} = \frac{a(a+b)}{4b}\,\textrm{.}</math>}} |
Aktuelle Version
Zuerst vereinfachen wir jeweils den Zähler und den Nenner des Hauptbruches
\displaystyle \begin{align}
a-b+\frac{b^{2}}{a+b} &= (a-b)\cdot\frac{a+b}{a+b} + \frac{b^{2}}{a+b} = \frac{(a-b)\cdot (a+b)+b^{2}}{a+b}\\[5pt] &= \frac{a^{2}-b^{2}+b^{2}}{a+b} = \frac{a^{2}}{a+b}\,,\\[15pt] 1-\biggl(\frac{a-b}{a+b}\biggr)^{2} &= 1-\frac{(a-b)^{2}}{(a+b)^{2}} = \frac{(a+b)^{2}}{(a+b)^{2}} - \frac{(a-b)^{2}}{(a+b)^{2}}\\[5pt] &= \frac{(a+b)^{2}-(a-b)^{2}}{(a+b)^{2}}\\[5pt] &= \frac{(a^{2}+2ab+b^{2})-(a^{2}-2ab+b^{2})}{(a+b)^{2}} = \frac{4ab}{(a+b)^{2}}\,\textrm{.} \end{align} |
Der ganze Bruch ist also
\displaystyle \frac{a-b+\dfrac{b^{2}}{a+b}}{1-\biggl(\dfrac{a-b}{a+b}\biggr)^{2}} = \frac{\dfrac{a^{2}}{a+b}}{\dfrac{4ab}{(a+b)^{2}}} = \frac{a^{2}}{a+b}\cdot\frac{(a+b)^{2}}{4ab} = \frac{a(a+b)}{4b}\,\textrm{.} |