Lösung 2.1:1b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (hat „Solution 2.1:1b“ nach „Lösung 2.1:1b“ verschoben: Robot: moved page) | |||
| Zeile 2: | Zeile 2: | ||
| {{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
| - | (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\ | + | (1+x-x^2)xy &= 1 \cdot xy + x \cdot xy -x^2 \cdot xy\\  | 
| &= xy+x^2y-x^3y\,\textrm{.}  | &= xy+x^2y-x^3y\,\textrm{.}  | ||
| \end{align}  | \end{align}  | ||
| </math>}} | </math>}} | ||
Version vom 12:08, 28. Feb. 2009
When the factor \displaystyle xy is multiplied by the expression inside the brackets, \displaystyle 1+x+x^2 , the distributive rule gives that all three terms \displaystyle 1, \displaystyle x and \displaystyle -x^2 are multiplied by \displaystyle xy,
| \displaystyle \begin{align} (1+x-x^2)xy &= 1 \cdot xy + x \cdot xy -x^2 \cdot xy\\ &= xy+x^2y-x^3y\,\textrm{.} \end{align} | 
 
		  