Lösung 2.1:1b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (hat „Solution 2.1:1b“ nach „Lösung 2.1:1b“ verschoben: Robot: moved page) |
|||
Zeile 2: | Zeile 2: | ||
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
- | (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\ | + | (1+x-x^2)xy &= 1 \cdot xy + x \cdot xy -x^2 \cdot xy\\ |
&= xy+x^2y-x^3y\,\textrm{.} | &= xy+x^2y-x^3y\,\textrm{.} | ||
\end{align} | \end{align} | ||
</math>}} | </math>}} |
Version vom 12:08, 28. Feb. 2009
When the factor \displaystyle xy is multiplied by the expression inside the brackets, \displaystyle 1+x+x^2 , the distributive rule gives that all three terms \displaystyle 1, \displaystyle x and \displaystyle -x^2 are multiplied by \displaystyle xy,
\displaystyle \begin{align}
(1+x-x^2)xy &= 1 \cdot xy + x \cdot xy -x^2 \cdot xy\\ &= xy+x^2y-x^3y\,\textrm{.} \end{align} |