Lösung 1.3:6d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (hat „Solution 1.3:6d“ nach „Lösung 1.3:6d“ verschoben: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | Wir verwänden die Rechenregeln sodass die Potenz <math>\bigl(5^{\frac{1}{3}}\bigr)^{4}</math> dieselbe Basis wie <math>400^{\frac{1}{3}}</math> hat | |
{{Abgesetzte Formel||<math>\bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,</math>.}} | {{Abgesetzte Formel||<math>\bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,</math>.}} | ||
- | + | Jetzt sieht man dass <math>\bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}</math>, nachdem <math>625 > 400</math>, und nachdem der Exponent, 1/3, positiv ist. |
Version vom 13:13, 29. Okt. 2008
Wir verwänden die Rechenregeln sodass die Potenz \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} dieselbe Basis wie \displaystyle 400^{\frac{1}{3}} hat
\displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,. |
Jetzt sieht man dass \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}, nachdem \displaystyle 625 > 400, und nachdem der Exponent, 1/3, positiv ist.