Lösung 1.3:4a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (hat „Solution 1.3:4a“ nach „Lösung 1.3:4a“ verschoben: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | Nachdem die beiden Potenzen dieselbe Basis haben, können wir die Rechenregel für Multiplikation von Potenzen verwenden | |
{{Abgesetzte Formel||<math>2^{9}\cdot 2^{-7} = 2^{9-7} = 2^{2} = 4\,</math>.}} | {{Abgesetzte Formel||<math>2^{9}\cdot 2^{-7} = 2^{9-7} = 2^{2} = 4\,</math>.}} | ||
- | + | Alternativ schreibt man alle Terme explizit, und kürzt den Bruch | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
2^{9-7} &= 2\cdot 2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot \frac{1}{{}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2}\\[5pt] | 2^{9-7} &= 2\cdot 2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot \frac{1}{{}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2}\\[5pt] | ||
&= 2\cdot 2 = 4\,\textrm{.}\end{align}</math>}} | &= 2\cdot 2 = 4\,\textrm{.}\end{align}</math>}} |
Version vom 12:29, 29. Okt. 2008
Nachdem die beiden Potenzen dieselbe Basis haben, können wir die Rechenregel für Multiplikation von Potenzen verwenden
\displaystyle 2^{9}\cdot 2^{-7} = 2^{9-7} = 2^{2} = 4\,. |
Alternativ schreibt man alle Terme explizit, und kürzt den Bruch
\displaystyle \begin{align}
2^{9-7} &= 2\cdot 2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot \frac{1}{{}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2\cdot {}\rlap{/}2}\\[5pt] &= 2\cdot 2 = 4\,\textrm{.}\end{align} |