Antwort 4.2:1
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {| width="100%" cellspacing="10px" |a) |width="50%" | <math>x=13\cdot\tan {27 ^\circ} \approx 6{,}62</math> |b) |width="50%" | <math>x=25\cdot\cos {32 ^\circ} \approx 21{,}2</math> |- |c) ...) |
K (hat „Answer 4.2:1“ nach „Antwort 4.2:1“ verschoben: Robot: moved page) |
||
(Der Versionsvergleich bezieht 2 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="50%" | <math>x=13\cdot\tan {27 ^\circ} \approx 6{ | + | |width="50%" | <math>x=13\cdot\tan {27 ^\circ} \approx 6\textrm{.}62</math> |
|b) | |b) | ||
- | |width="50%" | <math>x=25\cdot\cos {32 ^\circ} \approx 21{ | + | |width="50%" | <math>x=25\cdot\cos {32 ^\circ} \approx 21\textrm{.}2</math> |
|- | |- | ||
|c) | |c) | ||
- | |width="50%" | <math>x=\displaystyle\frac{14}{\tan {40 ^\circ}} \approx 16{ | + | |width="50%" | <math>x=\displaystyle\frac{14}{\tan {40 ^\circ}} \approx 16\textrm{.}7</math> |
|d) | |d) | ||
- | |width="50%" | <math>x=\displaystyle\frac{16}{\cos {20 ^\circ}} \approx 17{ | + | |width="50%" | <math>x=\displaystyle\frac{16}{\cos {20 ^\circ}} \approx 17\textrm{.}0</math> |
|- | |- | ||
|e) | |e) | ||
- | |width="50%" | <math>x=\displaystyle\frac{11}{\sin {35 ^\circ}} \approx 19{ | + | |width="50%" | <math>x=\displaystyle\frac{11}{\sin {35 ^\circ}} \approx 19\textrm{.}2</math> |
|f) | |f) | ||
- | |width="50%" | <math>x=\displaystyle\frac{19}{\tan {50 ^\circ}} \approx 15{ | + | |width="50%" | <math>x=\displaystyle\frac{19}{\tan {50 ^\circ}} \approx 15\textrm{.}9</math> |
|} | |} |
Aktuelle Version
a) | \displaystyle x=13\cdot\tan {27 ^\circ} \approx 6\textrm{.}62 | b) | \displaystyle x=25\cdot\cos {32 ^\circ} \approx 21\textrm{.}2 |
c) | \displaystyle x=\displaystyle\frac{14}{\tan {40 ^\circ}} \approx 16\textrm{.}7 | d) | \displaystyle x=\displaystyle\frac{16}{\cos {20 ^\circ}} \approx 17\textrm{.}0 |
e) | \displaystyle x=\displaystyle\frac{11}{\sin {35 ^\circ}} \approx 19\textrm{.}2 | f) | \displaystyle x=\displaystyle\frac{19}{\tan {50 ^\circ}} \approx 15\textrm{.}9 |