Lösung 4.3:8a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | K  (hat „Solution 4.3:8a“ nach „Lösung 4.3:8a“ verschoben: Robot: moved page) | 
Version vom 15:08, 22. Okt. 2008
We rewrite \displaystyle \tan v on the left-hand side as \displaystyle \frac{\sin v}{\cos v}, so that
| \displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.} | 
If we then use the Pythagorean identity
| \displaystyle \cos^2\!v + \sin^2\!v = 1 | 
and rewrite \displaystyle \cos^2\!v in the denominator as \displaystyle 1 - \sin^2\!v, we get what we are looking for on the right-hand side. The whole calculation is
| \displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.} | 
 
		  