Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 4.3:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (hat „Solution 4.3:6a“ nach „Lösung 4.3:6a“ verschoben: Robot: moved page)

Version vom 15:06, 22. Okt. 2008

If we think of the angle v as an angle in the unit circle, then v lies in the fourth quadrant and has x-coordinate 3/4.

If we enlarge the fourth quadrant, we see that we can make a right-angled triangle with hypotenuse equal to 1 and an opposite side equal to 3/4.

Using the Pythagorean theorem, it is possible to determine the remaining side from

b2+432=12 

which gives that

b=1432=1916=716=47. 

Because the angle v belongs to the fourth quadrant, its y-coordinate is negative and is therefore equal to b, i.e.

sinv=47. 

Thus, we have directly that

tanv=sinvcosv=3474=37.