Lösung 4.3:1b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (hat „Solution 4.3:1b“ nach „Lösung 4.3:1b“ verschoben: Robot: moved page)

Version vom 15:01, 22. Okt. 2008

Because the sine value for an angle is equal to the angle's y-coordinate on the unit circle, two angles have the same sine value only if they have the same y-coordinate. Therefore, if we draw in the angle \displaystyle \pi/7 on a unit circle, we see that the only angle between \displaystyle \pi/2 and \displaystyle \pi which has the same sine value lies in the second quadrant, where the line \displaystyle y = \sin (\pi/7) cuts the unit circle.

Because of symmetry, we have that this angle is the reflection of the angle \displaystyle \pi/7 in the y-axis, i.e. \displaystyle v = \pi - \pi/7 = 6\pi/7\,.